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Abstract

How can Large Language Models (LLMs) be aligned with
human intentions and values? A typical solution is to gather
human preference on model outputs and finetune the LLMs
accordingly while ensuring that updates do not deviate
too far from a reference model. Recent approaches, such
as direct preference optimization (DPO), have eliminated
the need for unstable and sluggish reinforcement learning
optimization by introducing close-formed supervised losses.
However, a significant limitation of the current approach is
its design for a single reference model only, neglecting to
leverage the collective power of numerous pretrained LLMs.
To overcome this limitation, we introduce a novel closed-form
formulation for direct preference optimization using multiple
reference models. The resulting algorithm, Multi-Reference
Preference Optimization (MRPO), leverages broader prior
knowledge from diverse reference models, substantially
enhancing preference learning capabilities compared to the
single-reference DPO. Our experiments demonstrate that
LLMs finetuned with MRPO generalize better in various
preference data, regardless of data scarcity or abundance.
Furthermore, MRPO effectively finetunes LLMs to exhibit
superior performance in several downstream natural language
processing tasks such as HH-RLHF, GSM8K and TruthfulQA.

Introduction
Large Language Models (LLMs) have emerged as powerful
tools in natural language processing, capable of generating
human-like text and performing a myriad of language-related
tasks (Lewkowycz et al. 2022; Achiam et al. 2023; Touvron
et al. 2023). However, aligning these models with human
intentions and values remains a challenging endeavor (Wang
et al. 2023). Aligning LLMs with curated human feedback
emerges as a critical solution to guide LLM response behavior
and address this challenge. Preference models like the
Bradley-Terry model (Bradley and Terry 1952) are often used
to measure the alignment of reward functions with empirical
preference data, facilitating an alignment framework using
reinforcement learning with human feedback (RLHF
(Christiano et al. 2017)). The framework aims to optimize
the preference models (maximizing preference reward) while
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ensuring that LLM updates do not stray too far from a base
reference LLM model (minimizing a Kullback-Leibler (KL)
divergence). While RLHF has been successful in enhancing
the helpfulness and accuracy of model-generated content
(Ouyang et al. 2022; Stiennon et al. 2020), it is unstable,
complicated, and resource-intensive.

Recent advancements, such as direct preference
optimization (DPO (Rafailov et al. 2023)) and other
likelihood-based preference learning (Zhao et al. 2023;
Azar et al. 2023; Ethayarajh et al. 2024; Chen et al.
2024), have sought to replace the cumbersome RLHF
with closed-form supervised losses. Although they have
demonstrated impressive performance compared to RLHF
and supervised finetuning (SFT), their exclusive reliance on
a single reference model restricts their potential, overlooking
the advantages of harnessing multiple pretrained LLMs.
Using multiple reference models offers two key benefits:
(i) it enhances robustness and generalization by combining
models that excel at different inputs to improve overall
performance across diverse data and tasks; (ii) multiple
references introduce stronger regularization, leveraging
diverse constraints to build a more resilient system less
prone to overfitting and reward hacking. This is increasingly
important as the open-source community consistently
introduces new pretrained/SFT LLMs of varying scales,
trained on diverse datasets (Touvron et al. 2023; Penedo
et al. 2023; Jiang et al. 2023). It underscores the necessity
for a solution that employs multiple references for LLM
finetuning, enabling the distillation of knowledge from
existing LLMs to enhance the alignment training stage.
Unfortunately, none of the prior works have proposed a
solution for utilizing multiple reference LLMs in direct
preference optimization.

The absence of such solutions stems from three challenges
in formulating closed-form multiple-reference preference
learning. Firstly, deriving a closed-form solution for the
RLHF objective with multiple referencing constraints is
nontrivial due to the non-linearity of multiple KL terms.
Secondly, reference models with varying architecture, size,
and pretraining data may produce diverging outputs given
the same input. This divergence could potentially confuse
the learning process, leading to unstable training, worse



than single-reference approaches. Thirdly, determining the
contribution of each reference model during training poses
a challenge, requiring extensive tuning. In this paper, we
tackle these three challenges, presenting a simple and
viable framework for direct preference optimization utilizing
multiple reference models.

To address the non-linearity of KL divergence, we propose
maximizing a simpler surrogate lower bound that allows for
the derivation of a novel closed-form solution incorporating
multiple reference models. Our solution is theoretically and
empirically proven superior to combining multiple DPO
losses. Next, we propose a clipped trust-regions optimization
(CTRO) to address the second challenge. By clipping the
log probability of diverging reference policy, we force the
mismatch to be minimal to facilitate stable training while
retaining useful information from the reference policy to
guide the optimization. More importantly, the clipping rate is
dynamically adjusted according to the predicted likelihood
of the data, enabling a more adaptable update. Lastly, to
automate the process of determining the contribution of
each reference model, we introduce a dynamic mechanism
(ARWC) to calculate the weight of each KL term based on
the confidence of the referencing LLMs.

Our holistic framework, dubbed Multiple Reference
Preference Optimization (MRPO), undergoes evaluation
across various tasks. In preference learning tasks involving
6 preference datasets, MRPO demonstrates significant
superiority over DPO and multi-reference baselines,
especially when preference data is limited with improvement
of up to 7%. In terms of helpfulness evaluation, MRPO
significantly outperforms DPO by 13.7%. Furthermore,
on general language understanding benchmarks like the
HuggingFace Open LLM Leaderboard (Beeching et al. 2023),
MRPO exhibits average enhancements of 3-4% compared
to SFT and 1.2% compared to DPO. Certain tasks show
more than 5% improvements over DPO. Importantly, these
enhancements are evident across various configurations,
including different numbers of reference models (2 or 3)
and architectures of LLMs (Llama, Mistral, and Qwen).
We perform a comprehensive ablation study to demonstrate
the efficacy of CTRO and ARWC mechanisms. Finally,
we demonstrate that MRPO, when implemented correctly,
adds minimal computation overhead compared to DPO,
maintaining efficiency while enhancing performance.

Background
Problem Formulation and Notations
We rely on Azar et al. (2023) to formally define the problem
and notations. Given an input x ∈ X where X is the
finite space of input texts, a policy π models a conditional
probability distribution π(y|x) where y ∈ Y is the output in
the finite space of output texts. From a given π and x, we can
sample an output as y ∼ π (·|x). Preference data is generated
by sampling two outputs (y, y′|x) from policies π and µ and
presenting them to an agent, normally a human, for rating to
indicate which one is preferred. For example, y ≻ y′ denotes
y is preferred to y′. A preference dataset is then denoted as
D =

{
yiw, y

i
l |xi
}N
i=1

where N is the number of data points,

yw and yl denote the preferred (chosen) and dispreferred
(rejected), respectively. Assuming that there exists a true
model of preference of the agent p∗ (y ≻ y′|x) that assigns
the agent’s probability of y being preferred to y′ given x.
Using datasetD, our goal is to find a policy π maximizing the
expected preference while being close to a reference policy
πref , which results in the following optimization problem:

max
π

E
x∼ρ

y′∼µ(·|x)
y∼π(·|x)

[Ψ (p∗ (y ≻ y′|x))]− βDKL (π ∥πref ) (1)

where ρ is the input distribution, Ψ is a scaled function, DKL

is the Kullback–Leibler divergence and β is a hyperparameter.
Usually, π is initialized as πref for stable optimization.

Preference Learning with Reward Function and
Reinforcement Learning
In this approach, Bradley-Terry model (Bradley and Terry
1952) is employed as the preference model:

p (y ≻ y′|x) = σ (rθ (x, y)− rθ (x, y
′)) (2)

where σ denotes the sigmoid function and r : X ×Y → R is
a reward model parameterized by θ, which assigns a scalar
score to indicate the suitability of output y for input x. In
earlier works (Christiano et al. 2017), the reward model is
trained on D to minimize the negative log-likelihood loss:

LR = −Ex,yw,yl∼D [log σ (rθ (x, yw)− rθ (x, yl))] (3)

Given a trained reward model r, and the scaled function as
Ψ (q) = log

(
q

1−q

)
∀q : 0 < q < 1, the objective in Eq. 1

can be rewritten as:

max
π

E
x∼ρ

y∼π(·|x)

[r (x, y)]− βDKL (π ∥πref ) (4)

This RLHF objective is employed to train LLMs such as
Instruct-GPT (Ouyang et al. 2022) using PPO (Schulman
et al. 2017).

Direct Preference Optimization
Reward training and RL finetuning require significant
resources and can be cumbersome. Recent approaches
circumvent these challenges by directly optimizing the policy
via minimizing a preference-based negative log-likelihood
loss (Rafailov et al. 2023), LDPO :

−Ex,yw,yl∼D

[
log σ

(
β log

πθ (yw|x)
πref (yw|x)

− β log
πθ (yl|x)
πref (yl|x)

)]
(5)

The term rθ (x, y|πref ) = β log πθ(y|x)
πref (y|x) plays the role of

an implicit reward. The authors in Rafailov et al. (2023)
proved that minimizing this loss is equivalent to solving the
optimization problem in Eq. 4.



Method
Multi-Reference Preference Optimization
In this paper, we are focused on situations involving K

reference policies
{
πk
ref

}K

k=1
. Therefore, extending from

Eq. 4, our objective can be formulated as a multi-reference
RLHF objective:

max
π

E
x∼ρ

y∼π(·|x)

[r (x, y)]− β

(
K∑

k=1

αkDKL

(
π
∥∥πk

ref

))
(6)

where αk are weighting coefficients for each reference
policy and 1 =

∑K
k=1 αk. The main policy can only be

initialized as one of {πk
ref}Kk=1. Without loss of generality,

we denote π1
ref as the initializing reference policy for the

main policy πθ. Previous studies have explored this objective,
showing improvements over single-reference constraints and
convergence proof in pure RL settings (Le et al. 2022).

However, addressing this optimization problem in LLMs
through reward learning and RL finetuning poses similar
challenges to using RL for Eq. 4. Hence, we propose
an alternative approach that leverages direct preference
optimization for the scenario involving multiple reference
policies. We aim to find a closed-form solution for the multi-
reference RLHF objective in Eq. 6. Unfortunately, deriving
an exact closed-form solution is challenging due to the
nonlinearity of DKL terms. To circumvent this, we suggest
obtaining a closed-form solution for a surrogate objective,
which serves as a lower bound for the multi-reference RLHF
objective. We summarize our findings as a proposition below.

Proposition 1. The following policy is the optimum for a
lower bound of the RLHF objective (Eq. 6):

π∗ (y|x) = 1

Z (x)
π̃ref (y|x) exp

(
1

β
r (x, y)

)

where π̃ref (y|x) =
(∑K

k=1
αk

πk
ref (y|x)

)−1

and Z (x) =∑
y π̃ref (y|x) exp

(
1
β r (x, y)

)
.

Proof. See Appendix A.1.

Following the derivation in Rafailov et al. (2023) with our
proposed optimal policy π∗, we have the associated direct
preference loss function, LMRPO, as follow,

−Ex,yw,yl∼D

[
log σ

(
β log

πθ (yw|x)
π̃ref (yw|x)

− β log
πθ (yl|x)
π̃ref (yl|x)

)]
(7)

The loss function is similar to the DPO loss (Eq. 5), but
instead of using a single reference policy πref , we substitute
it with a ”virtual” reference policy π̃ref that aggregates
information from all multiple reference policies.

Clipped Trust-Regions Optimization (CTRO)
An issue that may arise when multiple reference policies
are involved is the mismatch between the reference policy
and the main policy. This is less common with single-
reference DPO, as the main policy and the reference policy
share the same origin, ensuring a small mismatch across
training. However, with multiple-reference policies, those not
chosen to initialize the main policy can result in significantly
different probabilities compared to the main one (due to
differences in architectures, pretraining, and tokenizers),
potentially leading to unstable training and, at times, loss
divergence. Yet, it is crucial to leverage diverse likelihood
views on the generated output to ensure generalization.

To address this dilemma, we propose to constrain the
virtual reference policy π̃ref in the vicinity of the initializing
reference policy π1

ref . As such, we propose to clip the log-
probability of the other reference policies πk>1

ref as follows,

log π̂k>1
ref (y|x) = min

(
max ( log πk>1

ref (y|x) ,

(1 + ϵ) log π1
ref (y|x) ), (1− ϵ) log π1

ref (y|x)
)

(8)

where ϵ defines the vicinity range around π1
ref . Then we will

replace πk>1
ref with π̂k>1

ref in the π̃ref defined in Proposition 1.
Using a fixed ϵ is overly restrictive and suboptimal since

different data and policies may require different trust region
ranges. Thus, we suggest an adaptive approach to define ϵ
based on the predicted likelihood of the data. Essentially,
suppose the log probability of a reference model for a given
data point is large, indicating high reliability. A conservative
update should be applied (smaller ϵ) to exploit the reference
policy. Conversely, for lower log probabilities, we may prefer
more exploration, allowing reference values to diverge from
the initial π1

ref (bigger ϵ). That is,

ϵ (y|x) = ϵmax

∣∣∣∑K
k=1 log πk

ref (y|x)
∣∣∣∑

y′

∣∣∣∑K
k=1 log πk

ref (y
′|x)
∣∣∣ (9)

where ϵmax is a hyperparameter specifying the maximum
ratio for an updating range. It is worth noting that since
0 ≤ π (·) ≤ 1, the log-probability is always negative,
meaning a larger absolute value of the log-probability
indicates less confidence. The denominator represents the
sum of all possible output y′, serving as a normalization
factor. Usually, we only have two outputs (yw, yl) per input
x so the denominator is the sum of two terms.

Adaptive Reference Weighting Coefficients (ARWC)
If we have no preference or prior knowledge of the reference
policies, we can simply use αk = 1/K ∀k. However, if we
assume that the reference policy obtains a reasonable ability
to differentiate between yw and yl such that even when it
make wrong preference (i.e log yl>log yw) the likelihood
difference should not be too large, we can introduce an
automatic mechanism to determine the value of αk based
on the confidence of the reference policy. Specifically, we
examine the absolute difference between the log-probability



of the two outputs (yw, yl) as an indicator of the policy’s
confidence in its ability to discriminate between two outputs.
In essence, a larger difference suggests that the policy
distinguishes one output from another more decisively.
Formally, we propose to adaptively compute reference
weighting coefficients as:

αk =

∣∣∣log πk
ref (yw|x)− log πk

ref (yl|x)
∣∣∣∑K

i=1

∣∣∣log πi
ref (yw|x)− log πi

ref (yl|x)
∣∣∣ (10)

The coefficient is normalized across reference policies, giving
greater weight to those with higher discriminative confidence.

Comparison with Multiple DPO
When having multiple reference policies, a naive solution for
direct preference learning is to combine multiple DPO losses
(Multi-DPO):

LMulti−DPO = −Ex,yw,yl∼D[
K∑

k=1

αk log σ

(
β log

πθ (yw|x)
πk
ref (yw|x)

− β log
πθ (yl|x)
πk
ref (yl|x)

)]
(11)

We can show that our proposed MRPO is more desirable
than this Multi-DPO loss. As such, let the implicit reward
rθ(x, y|πk

ref ) = β log πθ(y|x)/πk
ref (y|x), we find that

the gradients of the likelihood of outputs are scaled
by the reward error σ (rθ (x, yl|π̃ref )− rθ (x, yw|π̃ref ))

and
∑K

k=1 αkσ
(
rθ

(
x, yl|πk

ref

)
− rθ

(
x, yw|πk

ref

))
,

corresponding to MRPO and Multi-DPO, respectively. Under
mild assumptions, we can prove the following result:
Proposition 2. Assume that reference policies are
constrained to be relatively close to each other, ensuring

that
{
dk = rθ

(
x, yl|πk

ref

)
− rθ

(
x, yw|πk

ref

)}K

k=1
share

the same sign ∀k, then{
|∇θLMRPO| ≥ |∇θLMulti−DPO| ∀dk ≥ 0

|∇θLMRPO| ≤ |∇θLMulti−DPO| ∀dk ≤ 0

Proof. See Appendix A.2.

As a result, when the reward estimations are wrong, i.e.,
∀dk > 0, MRPO update magnitude will be greater than that
of Multi-DPO, which is desirable because we want to fix
the likelihood faster to correct the implicit reward. On the
contrary, when the reward estimations are right, i.e., ∀dk < 0,
MRPO update magnitude will be smaller than that of Multi-
DPO, stabilizing the convergence and reducing over-fitting.

Experimental Results
In our experiments, we will always refer to the first
(initializing) reference model as RefM1, the second as
RefM2, and so forth. The Base model is the original LLM that
will undergo finetuning on preference data and is initialized
as RefM1. Throughout experiments, if not stated otherwise,

Llama (L), Mistral (M), and Qwen (Q) refer to Llama-2-
7b-chat-hf, OpenHermes-2.5-Mistral-7B, and Qwen1.5-7B-
Chat, respectively. Unless specified otherwise, we finetune
these LLMs using LoRA 4-bit quantization to enable faster
training and accommodate our hardware of a single Tesla
A100 GPU with 32GB of memory. Further training details are
provided in Appendix B.1. The source code can be accessed
at: https://github.com/thaihungle/MRPO.

To assess model performance, we finetune the model with
preference data and evaluate it on preference learning and
general language understanding (GLU) tasks. In preference
learning, we measure the Preference Accuracy in predicting
whether two responses, y1|x and y2|x are chosen (preferred)
or rejected (dispreferred). In particular, for MRPO, we
use β log πθ(y|x)

π̃ref (y|x) as the implicit reward r(x, y) for each
response, with the response classified as chosen or rejected
if it has a higher or lower reward, respectively. As for
other methods, we use β log πθ(y|x)

πref (y|x) as the implicit reward
(Rafailov et al. 2023). Another preference metric worth
considering is the Reward Margin, which quantifies
the difference between the chosen and rejected rewards:
r(x, yw)− r(x, yl). In helpfulness evaluation, we adopt Win
Rate suggested by GPT-4 evaluator (Achiam et al. 2023). In
GLU, we employ the GLU Metric provided by the task. All
measurements are desirable when they are higher.

Performance when Preference Data is Scarce
Datasets In real-world scenarios, human feedback is limited.
Here, we curate 3 small preference datasets (hundreds to a
few thousand data points) to simulate the scarcity of feedback
data. Each training dataset comprises a random subset from a
larger public preference dataset available in the Hugging Face
data repository. The remaining portions of the dataset will
be utilized as testing data. These datasets are generated with
inputs, outputs, and preference rankings often produced by
powerful LLMs like GPT-4, making them suitable for training
smaller LLMs such as Llama. The datasets are labeled as S1,
S2, and S3, and their details are given in Appendix Table 6
and Appendix B.2.
Baselines DPO represents the standard single-reference
approach. We note that, as will be shown in our experiments,
this is a strong baseline because it is non-trivial to
leverage multiple reference models. Multiple-reference
methods include Multi-DPO as described earlier, RLHF-
our RL version using reward model (Christiano et al.
2017) and PPO to directly optimize Eq. 6, and KD which
leverage a knowledge distillation loss (Agarwal et al. 2024)
(β
∑K

k=2 αkDKL(π||πk
ref )) together with the original DPO

loss. KD aims for DPO optimization using one reference
model (k = 1) while forcing the optimized policy (student)
similar to other reference models (teachers, k > 1). Note that
this method requires sampling y from the main policy during
training to estimate the DKL, which makes the process slow.

Unless stated otherwise, all baselines the same common
hyperparameters such as learning rate (10−5), batch size (8),
number of epochs (3), and β = 0.1. For Multi-DPO, we
have to use clipped trust regions to ensure RefM2 is close
to RefM1. Otherwise, the learning will not converge. To



Dataset S1 S2 S3
L←M M←L L←M M←L L←M M←L

DPO 93.9±1.4 98.7±0.7 94.4±2.9 96.7±1.8 54.8±5.4 52.2±3.7
RLHF 67.6±3.6 71.7±1.2 83.3±2.0 88.8±0.7 50.6±1.2 49.9±5.5

KD 78.4±7.3 86.8±2.8 94.3±2.4 96.3±2.4 46.9±7.0 51.8±3.8
Multi-DPO 95.6±1.7 98.0±0.8 95.5±1.2 96.3±1.2 41.1±3.6 50.8±0.8
Mean Ref 95.9±1.6 97.9±2.1 95.6±1.8 96.6±1.2 45.6±4.4 51.3±1.2

MRPO (Ours) 97.2±1.7 99.5±0.8 97.0±3.2 97.0±1.6 61.3±5.2 56.0±1.9

Table 1: Final mean±std. testing accuracy (×100) on small datasets over 5 runs. Bold denotes the best, statistically different
from the others as Cohen effect size ≥ 0.5. Italic denotes the second best.

make a fair comparison, both MRPO Multi-DPO, and KD
use ϵmax = 0.1 and incorporate the adaptive ϵ. Multi-DPO,
RLHF and KD use their best fixed α ∈ {0.1, 0.5, 0.9} tuned
using dataset S1. For Multi-DPO, RLHF, KD, and MRPO,
we consider 2 reference models (K = 2), and examine 2
possible modes of initialization: (1) L←M, the Base model
is initialized as Llama (RefM1) for all baselines, and the
RefM2 is Mistral for multi-reference methods; (2) M← L,
the order is reversed.
Results Table 1 reports the final preference accuracy
on test sets. MRPO consistently outperforms DPO by a
significant margin, 3-7% and 1-4% for L ← M and M ←
L, respectively. Mode L←M observes more improvement
because Mistral is stronger than Llama in these tasks and thus,
using Mistral as RefM2 will bring more benefits than using
Llama. Overall, MRPO regularizes the main policy using
both Llama and Mistral, creating a model that surpasses each
individually. On the other hand, Multi-DPO underperforms
DPO and MRPO in many cases, indicating that combining
multiple references in a naive way, even when equipped
with our CTRO and ARWC, cannot yield favorable results.
RLHF performs the worst, likely due to the instability
of RL optimization, especially under multiple reference
constraints. KD also underperforms compared to DPO and
MRPO, highlighting the challenges of applying knowledge
distillation to alignment problems without theoretical support
for the naive KD approach.

Appendix Fig. 1 depicts the testing preference accuracy
curves over the training duration for all methods across
2 initialization modes. These curves demonstrate that
all methods, except RLHF in some cases, boost the
chosen/rejection prediction accuracy of the Base model (the
first evaluation point in each graph is lower than the following
points). Among all, MRPO exhibits early outperformance
compared to other baselines and maintains its superior
performance until convergence.

Can MRPO Scale to Big Preference Datasets?
Datasets To assess the scalability of MRPO to real
and large datasets, we utilize 3 big preference datasets:
HelpSteer, Ultrafeedback, and Nectar (see Appendix Table
7). Each dataset employs human rankings to assess the
outputs generated by powerful LLMs. Finetuning LLMs
for just one epoch is sufficient for large datasets to achieve
learning convergence. We use the provided train/test split for
HelpSteer and Ultrafeedback. We randomly allocate 90% of

the data for training purposes and 10% for testing for Nectar.
Baselines and Results In this task, we evaluated MRPO
(K = 2) against DPO, the top two methods from our
prior tests, using the same initialization approaches detailed
earlier. The preference accuracy result, reported in Table
2’s upper row and Appendix Fig. 2, demonstrates that
MRPO consistently surpasses DPO in real-world preference
datasets, showing an improvement gain of approximately 3-
5% and up to 1% for L←M and M←L modes, respectively.
Since Preference Accuracy can sometimes be unclear in
demonstrating performance, especially with borderline inputs
where the chosen and rejected ground truth may not be
entirely accurate, we also examine the Reward Margin of
DPO and MRPO on these datasets. The result, displayed
in Table 2’s lower row and Appendix Fig. 3, demonstrates
MRPO’s superior ability to separate chosen and rejected
outputs, as evidenced by a significantly higher Reward
Margin of 10-20% compared to DPO. The findings confirm
MRPO’s capability to effectively scale with large datasets for
preference learning tasks.

MRPO Helpfulness Assessment
To assess the generalization of MRPO in generating helpful
responses, we employ the MRPO and DPO models finetuned
on the Nectar dataset (as in the previous section). These
models are evaluated on 2 datasets: the helpful and harmless
HH-RLHF (Bai et al. 2022) and Alpaca-Eval 2.0 (Li et al.
2023). We input queries from this dataset into LLMs trained
by MRPO and DPO, record their respective responses (up
to 200 tokens), and utilize GPT-4o to determine the more
helpful method.

Given budgetary constraints, our evaluation was limited to
the initial 300 test set samples. Table 3 presents the results.
On HH-RLHF data, MRPO outperformed DPO with a win
rate of 45.0% to 31.3%. On Alpaca-Eval, MRPO outperforms
DPO by achieving a higher win rate (24.0% vs 15.3%). These
results suggest that training an LLM with MRPO enhances
its ability to generate helpful responses due to exposure
to diverse reference models. Details of the evaluation and
sampled results are provided in Appendix B.2.

How Effective is MRPO on General Language
Understanding Benchmarks?
For our evaluation benchmark, we utilized the Huggingface
Open LLM Leaderboard, a standard in the field (Beeching
et al. 2023). In this benchmark, we explore a variety of



Metric Dataset HelpSteer Ultrafeedback Nectar
L←M M←L L←M M←L L←M M←L

Accuracy DPO 68.9±0.4 70.8±4.3 69.8±0.9 72.0±1.1 75.6±3.9 78.5±3.6
MRPO 73.6±1.6 71.6±5.2 72.9±2.9 73.2±1.9 79.2±1.2 78.7±3.0

Margin DPO 0.64±0.01 0.95±0.20 0.70±0.07 1.14±0.12 1.52±0.08 2.65±0.29
MRPO 0.77±0.07 1.05±0.20 0.82±0.10 1.27±0.26 1.73±0.05 3.13±0.25

Table 2: Final mean±std. testing preference accuracy (upper, ×100) and reward margin (lower) on big datasets over 3 runs. Bold
is best, statistically different from others as Cohen effect size ≥ 0.5.

HH-RLHF Dataset
Model Win ↑ Tie Lose ↓
DPO 31.3 23.7 45.0

MRPO 45.0 23.7 31.3
Alpaca-Eval Dataset

Model Win ↑ Tie Lose ↓
DPO 15.3 60.7 24.0

MRPO 24.0 60.7 15.3

Table 3: Win, Tie, and Lose rate (%): MRPO vs DPO in
measuring helpfulness of responses. Bold denotes the better.

datasets, collectively covering tasks such as math (GSM8k)
multi-task language understanding (MMLU), human
falsehood understanding (TruthfulQA), and commonsense
reasoning (Arc, HellaSwag, Winogrande). The evaluation
process presents the language models with few-shot in-
context examples and questions. We apply the standard
evaluation protocol to evaluate and report average scores
(GLU Metrics) across all datasets.

In this experiment, we consider the third reference model
RefM3 as Qwen to verify the scalability of our method to
K = 3 on the standard GLU benchmark. We examine the
following initialization modes: (1) L←M, Q where Mistral
and Qwen are additional reference models for Base model
Llama, (2) M←L, Q where Llama and Qwen are additional
reference models for Base model Mistral, and (3) Q ←M,
L where Mistral and Llama are additional reference models
for Base model Qwen. Following prior practices (Chen et al.
2024), we adopt full finetuning to finetune the Base models
on Ultrafeedback dataset using DPO and MRPO and evaluate
the LLMs using Language Model Evaluation Harness library
(Gao et al.). We report all results in Table 4. MRPO leads
to a notable enhancement in the Base model of 3.5%, 1.4%,
and 0.8%, surpassing DPO with an average improvement
of 1.1%, 1.0% and 1.3% for initialization (1), (2) and (3),
respectively. Notably, there are several cases in which MRPO
can outperform DPO by a huge margin, such as 6.8% in
GSM8K (M←L, Q), 5.8% in TruthfulQA (L←M, Q) and
5% in GSM8K (Q←M, L). We also explore MRPO (K = 2,
L←M and M←L) and observe that this variant consistently
surpasses DPO in performance, albeit falling short of MRPO
(K = 3), suggesting the advantages of incorporating more
reference models (see Appendix Table 8).

Ablation Study
The Importance of Clipped Trust-Region Optimization
(CTRO) To investigate the role of CTRO, we utilize the

small yet relatively challenging dataset S3 and conduct
experiments with various ϵmax values: ϵmax = 0 (MRPO
equals DPO), ϵmax = 106(No clip), and ϵmax =
{1, 0.1, 0.01}. We also examine different reference models:
(i) We employ RefM2 (Llama supervised tuning on Alpaca
dataset) as a finetuned model of RefM1 (Llama), aiming to
ensure that RefM2 is closely related to RefM1 (same family);
and (ii) RefM2 (Mistral) is from a different family from
RefM1 (LLama), which indicates a larger mismatch between
the two reference models. Here, different families mean that
LLMs can vary in architecture, tokenizer and/or be pretrained
on distinct corpora, where the sentence-level log probability
of these LLMs for the same input can differ by hundreds of
units. Table 5 reports the final preference accuracy.

We observe that for setting (ii) when ϵmax ≥ 1, the
training loss can escalate significantly, reaching values as
high as 10, and occasionally even infinity, highlighting the
instability of training in the absence of CTRO. This is evident
in the poor performance of ϵmax =

{
106, 1

}
. Utilizing

CTRO with small ϵmax results in more stable training.
However, excessive constraint, where ϵmax is too small, can
lead to nearly identical performance compared to DPO. In
setting (i), the training is stable even with big ϵmax. However,
the performance is not as good as setting (ii). In particular,
with the best ϵmax = 0.1, in setting (i), MRPO only
achieves a 2% improvement over DPO, whereas in setting
(ii), the improvement gap widens to 7%. This discrepancy is
understandable because without a diverse reference source,
RefM2 may not exhibit significant advantages over RefM1,
thereby limiting the extent of improvement. Therefore, we
conclude that it is more advantageous to leverage diverse
reference models, and employing CTRO is required to ensure
training stability.
Is adaptive ϵ necessary? We conduct more experiments with
fixed ϵ = 0.1 and adaptive ϵmax = 0.1 on S1, S2 and S3
using Llama and Mistral for RefM1 and RefM2, receptively.
The results depicted in Appendix Fig. 4 (top) illustrate that
fixed ϵ is still better than DPO, and adaptive ϵ outperforms
significantly fixed ϵ across all datasets, emphasizing the
importance of this mechanism in MRPO.

Analyzing Reference Weighting Coefficients In this
section, using adaptive ϵmax = 0.1, we compare the adaptive
α (ARWC) mechanism proposed in § with different fixed
values of α = {0.1, 0.5, 0.9} on S1, S2 and S3 using
Llama and Mistral for RefM1 and RefM2, receptively. As
shown in Appendix Fig. 4 (bottom), adaptive α demonstrates
competitive performance, either outperforming or closely
matching the performance of the best fixed α across all



Dataset GSM8K TruthfulQA HellaSwag MMLU Arc-easy Winograde Avg.
Base (Mistral) 49.6 44.5 62.8 60.8 83.5 74.4 62.6

DPO 53.7 53.3 66.6 60.1 82.7 73.6 65.0
MRPO (M←L,Q) 60.5 51.43 65.83 61.5 84.0 73.4 66.1

Base (LLama) 23.9 37.8 57.8 46.4 60.8 66.4 51.0
DPO 22.0 39.5 59.4 46.3 73.5 67.3 51.4

MRPO (L←M,Q) 24.3 45.3 57.9 46.4 74.1 66.7 52.4
Base (Qwen) 21.1 53.6 58.8 60.1 68.3 65.2 54.5

DPO 18.7 54.8 60.4 60.3 65.2 64.3 54.0
MRPO (Q←M,L) 23.7 54.9 59.0 60.1 68.4 65.4 55.3

Table 4: M←L: test performance (×100) across HuggingFace Open LLM Leaderboard datasets. Bold denotes best.

Setting ϵmax = 0 (DPO) ϵmax = 106 (No clip) ϵmax = 1 ϵmax = 0.1 ϵmax = 0.01
(i) (ii) (i) (ii) (i) (ii) (i) (ii) (i) (ii)

Test Acc. 0.54 0.54 0.51 0.45 0.53 0.49 0.56 0.61 0.54 0.55

Table 5: Clipped Trust-Region Optimization impact on S3. In setting (i), two reference models belong to the same family but
differ in the finetuning dataset, whereas in setting (ii), they are from different families of LLMs. The reported numbers are the
mean accuracy over 5 runs.

datasets. Given the minor discrepancies observed and the
associated cost of hyperparameter tuning, we have opted to
utilize adaptive α for all other experiments.

Related Works
The integration of human input has been instrumental in
advancing the performance of Large Language Models
(LLMs) in diverse domains, such as question answering
(Nakano et al. 2021), document summarization (Stiennon
et al. 2020), and dialog applications (Thoppilan et al.
2022). Traditionally, instruction finetuning (IFT) and
reinforcement learning from human feedback (RLHF)
framework (Christiano et al. 2017; Ouyang et al. 2022; Lee
et al. 2023) has employed RL to align Large Language
Models (LLMs). The RLHF objective is to maximize a
reward score derived from human preferences (chosen or
rejected) while simultaneously minimizing the disparity
between the new and initial policy. Recently, there has been a
significant move towards closed-form losses, exemplified
by DPO (Rafailov et al. 2023), which directly finetunes
LLM on offline preference datasets, consolidating RLHF’s
reward learning and policy adjustments into a single stage.
This “direct” approach is favored over RLHF due to their
maximum-likelihood losses, demonstrating superior speed
and stability than RL pipeline.

Other direct preference optimization methods (Zhao et al.
2023; Azar et al. 2023) formulate various adaptations of
closed-form losses to attain the RLHF objective. Recent
advancements have expanded beyond the traditional binary
preference data, focusing on novel human preference
models like Kahneman-Tversky value functions (Ethayarajh
et al. 2024). All these methods adhere to the fundamental
framework of RLHF, striving to fit a preference model while
ensuring the updates remain close to a reference model. In
contrast, our approach is the first direct preference finetuning
framework with multiple reference models.

Another line of work creates new preference data from

LLM’s own generated outputs, typically through self-training
paradigms (Chen et al. 2024; Yuan et al. 2024; Pattnaik et al.
2024), employing multiple reference data pairs (Pattnaik
et al. 2024). Our method is orthogonal to self-playing
approaches, featuring a faster alternative procedure as it
does not require additional data generation. In contrast to
methods employing multiple rewards, mixture of experts,
and model merging (Jang et al. 2023; Rame et al. 2024), our
approach does not involve training/loading multiple LLMs,
which is expensive. Instead, we train a single LLM using
(pre-computed) log-probability outputs of multiple reference
LLMs, and thus much more time/memory-efficient. During
testing, our inference cost is the same as using a single LLM.

While knowledge distillation (Lin et al. 2020; Agarwal
et al. 2024) could simplify constraining LLMs with
multiple reference models, finding a compatible KD loss
for direct preference optimization with strong theoretical
support is non-trivial. Additionally, directly using RL to
optimize preference rewards with multiple KL constraints,
as in previous studies (Le et al. 2022), is slow, and
unstable—similar to the issues faced by RLHF. In contrast,
our MRPO provides a more direct and efficient solution.

Discussion
In this paper, we present Multi-Reference Preference
Optimization (MRPO), a novel method leveraging multiple
reference models to improve preference learning for Large
Language Models (LLMs). We theoretically derive the
objective function for MRPO and conduct experiments with
LLMs like LLama2 and Mistral, demonstrate their enhanced
generalization across six preference datasets, helpfulness
evaluation, and competitive performance in six downstream
natural language processing tasks. Our study is limited by
using only up to three reference models of modest size. Future
research will explore the scalability of MRPO, examining
its performance with larger K values and a broader range of
LLM sizes across diverse benchmarks.
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Appendix
A. Methodology Details
A.1 Lower Bound Close-formed Solution To begin, we derive the closed-form solution for Eq. 6 as follows,

max
π

E
x∼ρ

y∼π(·|x)

[r (x, y)]− β

(
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(
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))
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To simplify the optimization problem, using Jensen inequality
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)
, we

propose minimizing the following upper bound of the objective function in Eq. 14 (equivalent to a lowerbound of the original
RLHF objective):
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where we have the partition function
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We note that π̃ref > 0 and it is not necessary that π̃ref is a distribution. If we define the distribution:
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)
then the final objective is:
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Therefore, the optimal solution for the problem defined in Eq. 17 is:
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A.2 MRPO and Multi-DPO Gradient Inequality We can show that our proposed MRPO is more desirable than Multi-DPO
loss. To see that, we analyze the gradient wrt. the policy parameters θ of the two losses:

∇θLMRPO = −βEx,yw,yl∼D [σ (rθ (x, yl|π̃ref )− rθ (x, yw|π̃ref ))× (∇θ log πθ (yw|x)−∇θ log πθ (yl|x))]
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Applying Jensen inequality again with sigmoid monotonic property, we have:
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Now we use log monotonic property and the fact that 1/αk ≥ αk for 0 < αk ≤ 1 and assume 0 < αk∀k, we have:
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Plugging Eq. 20 yields:



Dataset Train/Test size Topic Source: https://huggingface.co/datasets
S1 364/3276 General wangrongsheng/comparison gpt4 data en
S2 502/502 AI/ML NeuralNovel/Neural-DPO
S3 2178/242 Math argilla/distilabel-math-preference-dpo

Table 6: Small datasets: S1, S2, and S3.
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Note that equality cannot be achieved in this case due to 1/αk = αk only when ∀αk = 1. When there is one αk = 0, we can
omit the corresponding πk

ref and follow the same derivation above to prove the inequality. Now we can multiply both sides of the
inequality with |∇θ log πθ (yw|x)−∇θ log πθ (yl|x) |, which yields{

|∇θLMRPO| ≥ |∇θLMulti−DPO| ∀dk ≥ 0

|∇θLMRPO| ≤ |∇θLMulti−DPO| ∀dk ≤ 0

B. Experimental Details
B.1 Training Details For experiments using LoRA finetuning, we use LoRA with the following configuration:
• Rank: 8
• α: 8
• Quantization: 4 bit
• Target layers:

– 7B LLMs: q proj,v proj
– 1B LLMs: q proj,k proj,v proj,o proj,gate proj,up proj,down proj

LoRA finetuning on the small datasets S1, S2, and S3 took 4-6 hours for 5 runs on our hardware while the running time for
big datasets is 2-3 days for 3 runs (each run uses a different random seed). Full finetuning on Ultrafeedback took 2-3 days.

We implemented MRPO and other baselines using a public (Pytorch) code repository https://github.com/hiyouga/LLaMA-
Factory (Apache-2.0 license). All the experiments are executed using this code base. The training configuration, if not stated
otherwise, follows exactly the default setting of the code base. We only adjust the batch size to suit our hardware. In particular,
unless stated otherwise, sampled batch size and the gradient accumulation steps are set to 2 and 4, respectively, leading to a
working batch size of 8 for most of the experiments. All the pretrained LLMs are downloaded from https://huggingface.co/ and
have Apache-2.0 license. The links to download are:
• Llama-2-7b-chat-hf : https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
• OpenHermes-2.5-Mistral-7B: https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B
• Qwen1.5-7B-Chat: https://huggingface.co/Qwen/Qwen1.5-7B-Chat

B.2 Datasets and Additional Results Below are some examples extracted from the small datasets:
S1
Input: What are the three primary colors?
Chosen Output: The three primary colors are red, blue, and yellow. These colors
are called primary because they cannot be created by mixing other colors and all
other colors can be made by combining them in various proportions. In the additive
color system, used for light, the primary colors are red, green, and blue (RGB).
Rejected Output: Red, Yellow, and Green.

S2
Input: You are an A.I assistant that has access to a vast library of information
about neural networks. What is the significance of the Aya initiative for future
research collaborations?
Chosen Output: The Aya initiative serves as a valuable framework for future
research collaborations that aim to bridge gaps in resources.
Rejected Output: The Aya initiative has no significance for future research
collaborations.



Dataset Train/Test size Source: https://huggingface.co/datasets
HelpSteer 8.1K/418 sablo/HelpSteer binarized

Ultrafeedback 61K/2K HuggingFaceH4/ultrafeedback binarized
Nectar 164K/19K HongchengGao/Nectar binarized

Table 7: Big datasets: HelpSteer, Ultrafeedback, and Nectar.

S3
Input: How can I simplify the algebraic expression ‘(3xˆ2 - 4yˆ3) / (2x)‘?.\n Take
a deep breath, think step by step, and give an accurate response
Chosen Output: To simplify the algebraic expression ‘(3xˆ2 - 4yˆ3) / (2x)‘, we
can follow a few steps:\n\nStep 1: Distribute the division symbol by multiplying
the expression by the reciprocal of the denominator. The reciprocal of ‘2x‘ is
‘1/(2x)‘, so the expression becomes ‘(3xˆ2 - 4yˆ3) * (1/(2x))‘.\n\nStep 2: Simplify
within the parentheses by dividing each term separately. \n\n- For the first term,
‘3xˆ2‘, divide ‘3xˆ2‘ by ‘2x‘. This gives us ‘(3xˆ2) / (2x) = (3/2) * (xˆ2 / x) =
(3/2) * x‘.\n\n- For the second term, ‘-4yˆ3‘, divide ‘-4yˆ3‘ by ‘2x‘. This gives
us ‘(-4yˆ3) / (2x) = (-2) * (yˆ3 / x)‘.\n\nStep 3: Combine the simplified terms
from Step 2. The expression now becomes ‘(3/2) * x - 2 * (yˆ3 / x)‘.\n\nSo, the
simplified form of the algebraic expression ‘(3xˆ2 - 4yˆ3) / (2x)‘ is ‘(3/2) * x -
2 * (yˆ3 / x)‘.
Rejected Output: To simplify the algebraic expression ‘(3xˆ2 - 4yˆ3) / (2x)‘, you
can divide each term in the numerator by the denominator.\n\nFirst, let’s divide
‘3xˆ2‘ by ‘2x‘. Since both terms have a common factor of ‘x‘, we can simplify
this expression to ‘3x‘.\n\nNext, we divide ‘-4yˆ3‘ by ‘2x‘. We can simplify this
expression by dividing each term separately. \n\nDividing ‘-4‘ by ‘2‘ gives ‘-2‘.
Then, dividing ‘yˆ3‘ by ‘x‘ gives ‘yˆ3/x‘.\n\nSo, the simplified form of ‘(3xˆ2 -
4yˆ3) / (2x)‘ is ‘3x - 2yˆ3/x‘.

Below are some examples extracted from the big datasets
HelpSteer
{Input: A group of people have been wrongfully convicted of a crime that they did
not commit. Write a testimony from one of the people in the group about their
experience being wrongfully convicted.
{Chosen Output: My name is [Name], and I am one of the wrongfully convicted. I
was wrongfully convicted for a crime that I did not commit, and I want to share
my experience with you.\n\nIt all started when I was arrested and charged with
a crime that I didn’t commit. I was innocent, but the evidence against me was
overwhelming. I was interrogated for hours, and I eventually confessed to a
crime that I didn’t commit.\n\nThe trial was a circus. The prosecution presented
a case that was full of lies and deceit. The jury didn’t believe me, and I was
found guilty. I was sentenced to life in prison.\n\nFor years, I struggled to
make sense of what happened to me. I was lost and confused, and I felt like
the justice system had failed me. But then, I found out about [Organization],
a group of people who are dedicated to helping those who have been wrongfully
convicted.\n\nI reached out to [Organization], and they started working on my case.
They investigated the evidence, and they found new witnesses who came forward with
new information. They uncovered evidence that proved my innocence, and after years
of fighting, I was finally freed.\n\nBeing wrongfully convicted was one of the
worst experiences of my life. But thanks to [Organization], I was able to clear my
name and start a new chapter. I want to share my story with you to raise awareness
about the importance of fair trials and the need to protect the rights of the
innocent.\n\nMy name is [Name], and I am one of the wrongfully convicted. But now,
I am free.
{Rejected Output: Hi there, I am an AI assistant that can answer questions about
a reference text. You can ask me about the reference text and I will provide an
answer. Please provide me with the reference text and I will answer your question.



Ultrafeedback
{Input: how can i develop a habit of drawing daily
{Chosen Output: Developing a daily habit of drawing can be challenging but with
consistent practice and a few tips, it can become an enjoyable and rewarding part
of your daily routine. Here are some strategies to help you develop the habit of
drawing daily:\n\n1. Set a specific time: Allocate a specific time of the day to
draw. It could be in the morning, afternoon, or evening. Make drawing a part of
your daily routine.\n2. Set a specific duration: Determine the amount of time
you want to spend on drawing each day. It can be as little as 10 minutes or as
long as an hour. Be consistent with the duration to help build the habit.\n3.
Start small and simple: Don’t try to create a masterpiece every day, start with
simple and easy-to-do sketches. Focus on improving your skills gradually.\n4. Use
a variety of tools and mediums: Experiment with different tools like pencils,
pens, markers, and different mediums like paper, canvas, or digital apps to keep
your drawing practice interesting and engaging.\n5. Take breaks and rest: Taking
breaks and resting after some time of drawing can help you avoid burnout and
stay motivated.\n6. Challenge yourself: Set challenges like drawing objects from
memory or a specific subject to improve your skills and keep your drawing practice
interesting.\n7. Track your progress: Keep a record of your daily drawing practice
and track your progress. This can be a source of motivation and help you see how
far you’ve come.\n\nRemember, developing a habit takes time and patience. Stay
consistent with your drawing practice, be flexible and open to trying new things,
and with time, you’ll develop a habit of daily drawing that brings you joy and
satisfaction.
{Rejected Output: As an AI language model, I cannot personally develop habits
for you. But, here are some tips for developing a habit of drawing daily:\n\n1.
Start small: Start with simple drawings or doodles and gradually increase the
complexity of your drawings.\n\n2. Set a schedule: Set a specific time every day
to draw, and try to stick to it as much as possible.\n\n3. Make it fun: Don’t
pressure yourself to create masterpieces every time you draw. Make it a relaxing
and enjoyable experience.\n\n4. Use resources: There are many drawing tutorials
available online. Use resources like YouTube or online drawing courses to help
you improve your skills.\n\n5. Surround yourself with inspiration: Expose yourself
to a variety of art forms, such as paintings, illustrations, and photographs, to
inspire and motivate you.\n\nRemember, everyone has their own creative style and
pace. Just keep practicing and enjoying the process of drawing.

Nectar
{Input: 0.002 = 1000 \n1 = x?
{Chosen Output: To find the value of x, we can set up a proportion using the given
information:\n\n0.002/1000 = 1/x\n\nTo solve for x, we can cross multiply:\n\n0.002
* x = 1000 * 1\n\n0.002x = 1000\n\nDividing both sides by 0.002:\n\nx = 1000 /
0.002\n\nx = 500,000\n\nTherefore, 1 is equal to 500,000 in this proportion.
{Rejected Output: 0.001 = x

Details on GPT-4o evaluation We construct the prompt for GPT-4o evaluation (as of August 2024) by introducing the input
query and the two responses from MRPO (method A) and DPO (method B) LLMs. We then manually check the GPT-4o’s
response to determine the winner. See below for prompt examples and GPT-4o responses.



{Prompt: Input from Human: what do i do if i stepped in dog poo?
---
Method A output: Oh no, that’s definitely not a fun situation to be in! If you’ve
stepped in dog poo, here are a few things you can do to clean yourself up and
prevent any potential health issues: 1. Wash your feet thoroughly with soap
and water as soon as possible. Make sure to scrub between your toes and under
your nails, where the dog poo may have gotten stuck. 2. Use hand sanitizer or
rubbing alcohol to clean your hands, especially after touching your feet. 3. Clean
your shoes or socks with soap and water, or dispose of them if they’re badly
contaminated. 4. If you’re wearing pants or a skirt, check to see if there’s any
dog poo on them and clean them as well. 5. Consider carrying a small container of
hand sanitizer or wipes with you in the future to clean up
---
Method B output: Great question! If you’ve stepped in dog poo, it’s important to
clean your foot thoroughly as soon as possible to prevent the risk of infection.
Here’s what you can do: 1. Wash your foot: Use soap and warm water to wash your
foot, paying special attention to the area where you stepped in the dog poo. Make
sure to rinse your foot thoroughly to remove any remaining bacteria. 2. Disinfect
your foot: After washing your foot, use a disinfectant spray or wipe to cover
your foot and between your toes. This will help kill any remaining bacteria and
prevent infection. 3. Clean your shoes: If you were wearing shoes when you stepped
in the dog poo, make sure to clean them as well. Use soap and water to wipe down
the soles and inside of the shoes, and let them air dry.
---
Consider the response from two methods A and B above, which method is better in
terms of helpfulness?

{GPT-4 Response: Between the two methods (A and B) for advising someone who stepped
in dog poo, Method A is better in terms of helpfulness for the following reasons:
Comprehensive Instructions: Method A provides more detailed steps, covering not
only the cleaning of the foot but also checking and cleaning other possible
contaminated areas such as shoes, socks, and clothing. This thoroughness helps
ensure all potential contamination is addressed.
Preventive Advice: Method A suggests carrying hand sanitizer or wipes in the
future, offering proactive advice to help the person avoid or better handle
similar situations in the future.
Health Considerations: Both methods mention cleaning to prevent infection, but
Method A also emphasizes hand hygiene by suggesting the use of hand sanitizer or
rubbing alcohol after touching the feet, which adds an extra layer of precaution.
Method B, while also helpful, is less detailed and doesn’t cover the possibility
of contamination on clothing or emphasize hand hygiene to the same extent.
Therefore, Method A is more helpful because it provides a broader and more
detailed set of instructions that addresses the situation more completely.

Dataset GSM8K TruthfulQA HellaSwag MMLU Arc-easy Winograd Avg.
Base (Mistral) 49.6 44.5 62.8 63.1 83.5 74.4 62.6

DPO 53.7 53.3 66.6 60.11 82.7 73.6 65.0
MRPO (K = 2, M←L) 56.1 51.05 65.13 61.42 84.4 74.2 65.4

Base (LLama) 23.9 37.8 57.8 46.4 60.8 66.4 51.0
DPO 22.0 39.5 59.4 46.3 73.5 67.3 51.4

MRPO (K = 2, L←M) 22.4 45.3 58.1 46.4 74.1 66.8 52.2

Table 8: Test performance (×100) across HuggingFace Open LLM Leaderboard datasets when K = 2. Bold denotes best.



Figure 1: Chosen/Rejection preference accuracy on 3 small datasets: S1, S2 and S3. The curves show mean and std. of preference
accuracy on test sets over training batches for 5 runs. In the first row, for multi-reference methods, RefM1 is LLama, and RefM2
is Mistral. In the second row, this order is reversed.



Figure 2: Chosen/Rejection preference accuracy on 3 big datasets: HelpSteer, Ultrafeedback and Nectar. The curves show the
mean and std. of preference accuracy on test sets over training batches for 3 runs.



R
ew

ar
d
 M

ar
g
in

R
ew

ar
d
 M

ar
g
in

Figure 3: Reward Margin on 3 big datasets: HelpSteer, Ultrafeedback and Nectar. The curves show the mean and std. of reward
margin on test sets over training batches for 3 runs.



Figure 4: Analysis on ϵ and α using S1, S2 and S3 datasets. The curves show the mean and std. of testing preference accuracy
over training batches for 5 runs. In the first row, adaptive ϵmax = 0.1 is compared with fixed ϵ = 0.1. In the second row, adaptive
α is compared with different fixed values of α.



Datasets S1 S2 S3
T S T S T S

DPO 1.1 5.6 2.3 3.4 6.3 8.2
MRPO 1.2 5.6 2.5 3.4 6.8 8.2

Table 9: Training time (T, hours) and speed (S, iters/s).

Computation Efficiency
In practical implementation, MRPO achieves efficiency by allowing precomputation of log probabilities from reference LLMs
on training data, loading one reference LLM into memory at a time. Since log-prob computation is significantly faster than
generating full sentences, this process is quick and enables MRPO to optimize the main LLM as fast as DPO. Also, after
precomputation, MRPO and DPO have similar memory requirement during training. As shown in Table 9, the total training
time (including log-prob precomputation for MRPO) and iteration speed (iters/s) for MRPO closely match those of DPO,
demonstrating that MRPO runs just as fast while delivering enhanced performance.


