
0.1 On the Benefit of Fastweight: A Case Study on Van-
ishing Gradients Alleviation

In this section, we analyze how NSM or any fastweight mechanism helps reduce
the vanishing gradients problem [1, 5] in the interface network of a MANN.
It is well known that MANN alleviates the gradients problem in the recurrent
controller by storing the states into an external memory [3, 4]. However, for the
interface network, current MANNs do not support any scheme to overcome the
problem. It is rather straightforward to realize that:

Proposition 1. The interface network in MANN suffers from the problem of
vanishing gradients when ‖W c‖ ‖M‖ → 0.

Proof. see Supplementary A.1.

We remind that long-term dependencies in the interface are often required to
generate correct memory operations. For instance, in the simple copy task, after
writing the last object into the memory, the interface network needs to generate
ξT that moves the reading head to the location of the first object in the memory,

which was dictated by ξ1. To learn that dependency, the norm
∥∥∥∂ξT∂ξ1

∥∥∥ should

not decay exponentially fast with T . Moreover, the decay becomes worse as
‖W c‖ ‖M‖ is very small close to zero (critical vanishing). Due to parameter
updates via backpropagation and data-dependent values of M, it is hard to
control the value of ‖W c‖ ‖M‖ or estimate its distribution. Thus, to analyze the
benefit of using multiple programs we need to make no-knowledge assumption
that during training, ‖W c‖ ‖M‖ can reach any value in range [0, b] with equal
probability. For such a scenerio, introducing a dynamic W c

t from NSM is a
simple way to help alleviate the decay rate.

Theorem 2. Assume during training, ‖W c‖ ‖M‖ ∼ U (0,b) where 0 < b <
∞ and the programs stored in NSM are independent, the chance for critical
vanishing gradients (‖W c‖ ‖M‖ → 0) happen when using multiple programs
from NSM is smaller than that when using one program accross timesteps.

Proof. see see Supplementary A.2.

0.2 Theorem proofs

0.2.1 Proof of Proposition 1

Proof. For the sake of simplicity, the read vector at timestep t-th can be writ-
ten as rt = Mᵀwrt = MᵀDrξt, where M, wrt are the data memory and the read
weight, respectively. The constant binary matrix Dr indicates the elements of ξt
that will be allocated to form wri . Hence, the output of the RNN controller reads
ct = Woσ (Wxt + Uht−1 + V rt−1) = Woσ (Wxt + Uht−1 + VMᵀDrξt−1). This
leads to a recursive equation ξt = W cWoσ (Wxt + Uht−1 + VMᵀDrξt−1). As-
suming the memory Mᵀ is constant w.r.t ξt−1, ∂ξt

∂ξt−1
= W cWodiag (σ′)VMᵀDr.

That means,
∥∥∥ ∂ξt
∂ξt−k

∥∥∥ ≤ (‖W c‖ ‖M‖γ)
k

where γ is the bound of ‖W‖ ‖diag (σ′)‖ ‖V ‖ ‖Dr‖.
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Hence, the interface network will suffer from the vanishing gradients problem
if ‖W c‖ ‖M‖ < 1/γ. The proof can be extended for GRU and LSTM con-
troller.

0.2.2 Proof of Theorem 2

Lemma 3. Given n IID random variables X1, X2, ..., Xn ∼ U (0,b) then for
0 < z < b,

P (X1X2...Xn ≤ z) =

∫ z

x=0

ln
(
bn

x

)n−1
bn (n− 1)!

dx

Proof. see [2].

Lemma 4. Given a random variables X ∼ U (0,b) and an integer n then for
0 < z < b,

P (Xn < z) =

∫ z

x=0

x( 1
n−1)

bn
dx

Proof. P (Xn < z) = P (X < z1/n) = z1/n

b =

∫ z

x=0

x(
1
n

−1)
bn dx.

When using one program, we can rewrite the vanishing gradients chance as,

P (‖W c‖ ‖M‖ < 1/γ) = P
(

(‖W c‖ ‖M‖)T < 1/γT
)

When using multiple program, the condition for vanishing gradients problem
can be written as,

T∏
t=1

‖W c‖ ‖M‖ < 1/γT

where T is the number of timesteps and each ‖W c‖ ‖M‖ ∼ U (0,b). Let

P

(
T∏
t=1
‖W c‖ ‖M‖ < 1/γT

)
denote the chance for vanishing gradients happen

in this case. According to Lemma 3 and 4, we have

P

(
T∏
t=1

‖W c‖ ‖M‖ < 1/γT

)
−P (‖W c‖ ‖M‖ < 1/γ) = F

(
1/γT

)
=

∫ 1/γT

x=0

ln
(
bn

x

)n−1
bn (n− 1)!

−x
( 1

n−1)

bn
dx

If we examine the function f (x) =
ln( bn

x )
n−1

bn(n−1)! −
x(

1
n

−1)
bn with x > 0, it is not hard

to realize that ∀b ∈ R+, n ∈ N+: lim
x→0

f (x) → −∞ because ln

(
ln( bn

x )
n−1

bn(n−1)!

)
=
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o

(
x(

1
n

−1)
bn

)
as x→ 0. This means the integral F

(
1/γT

)
< 0 for 0 < 1/γT < z0

and z0 →∞ as n, b→∞. Threfore, the chance for critical vanishing gradients
happen when using multiple programs from NSM is smaller than that when
using one program accross timesteps. In practice, the interface network weight
can have hundred of thousand elelments, resulting in a large values of b (often
> 10). This magnifies the difference between two density functions, and thus
increses the value of z0, making the result holds true not only for critical cases
but also for most of the cases.
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