
Neural Optimal-Controlled Memory

October 31, 2019

1 Motivations

Similar to other long-term credit assignment problems, memory control is diffi-
cult due to:

1. Lack of a principled motivation that drive the control besides error-driven
motivation

2. Gradient vanishing across long timesteps

3. Local optima introduced by backpropagation

We aim to overcome these challenges with:

• Introduce maximum contribution principle (1)

• Neural optimal control framework: hopefully solve (2)(3) and support (1)

2 Related ideas

Self-supervision is a classical concept. The current literature is based on gener-
ative principles. (1) Helmholtz machine [5] relies on a hypothesis that we need
a generation process to support recognition process. In particular, a generator
creates fantasy of hidden activations, from which the recognizer is trained after.
Alternatively, the generator is trained towards hidden activations driven by the
recognizer. The mechanism happens inside the neural network. (2) World model
[4] also aims to generate an imagination of the world, from which an agent can
be trained on in sequential setting. Both approaches take advantages of the
training signals from the fantasy created by the generator, which motivates the
system to learn even when task-driven training signal is not available. Both
minimize the discrepancy between fantasy and real activities.

We aim for the same goal, yet with different principle. Our principle is
based on contribution. We maximize the contribution, from which a fantasy
of optimal actions is imagined. The controller is trained towards these fantasy.
The learning in our approach alternates between backpropagation and optimal
control.

1



3 Formulate memory control as optimal control
problem

Recap universal memory control:

• The memory is controlled by the controller (parameterized as θ)

• At each timesteps, the memory controller generates control signal ξt (par-
tially using external (assume stochastic) inputs at), update memory state
Mt then repeat for future timesteps

• The memory control system of dynamics for an instance of a:

Mt+1 = fwrite (Mt, ξt) (1)

ξt+1 = fθ (fread (Mt+1, ξt) , at) (2)

and we normally want to minimize some loss function which is conditioned
on the final state of the dynamic marginalized over external inputs:

min
θ∈Θ

∑
a

Φa (MT,a) (3)

If we want to add motivation loss, the final loss function becomes,

min
θ∈Θ

∑
a

Φa (MT,a) +
∑
a

∑
t

Lt (ξt,a,Mt,a, at) (4)

where Φa (MT,a) is the task (delayed, long-term) loss and Lt (ξt,a,Mt,a, at) is
the cost rate or motivation loss (intrinsic, energy,...) associated with external
variable a. The cost rate represents an internal motivation to minimize some
expected cost the agent is interested in. It should depends locally only the
current state and action.

For the sake of simplicity, the writing process is defined by the write-weight
wwt = Dwξt ∈ RN , the update value vt = Dvξt ∈ RD and erase value et =

Deξt ∈ [0, 1]
D

as follows:

Mt+1 = Mt ◦
(
E − wwt e>t

)
+ wwt v

>
t (5)

where ◦ is element-wise product, E is an N×D matrix of ones and the constant
binary matrices Dw,Dv, and De indicate the elements of ξt that will be allocated
to form wwt , vt and et. We can rewrite the first dynamic in full form:

Mt+1 = ft (Mt, ξt) = Mt ◦
(
E −Dwξt (Deξt)

>
)

+ Dwξt (Dvξt)
>

(6)

= Mt ◦
(
E −Dwξtξ

>
t D>e

)
+ Dwξtξ

>
t D>v (7)

Basically, ft is convex over ξt.

2



The read vector at timestep t-th can be written as rt = M>t+1w
r
t = M>t+1Drξt,

where M, wrt are the data memory and the read weight, respectively. The con-
stant binary matrix Dr indicates the elements of ξt that will be allocated to
form wri . Hence, the output of the RNN controller reads

ct+1 = Woσ (Wxt+1 + Uht + V rt) (8)

= Woσ
(
Wxt+1 + Uht + VM>t+1Drξt

)
(9)

This leads to a recursive equation 2 rewritten as,

ξt+1 = W cξt (10)

= W cWoσ
(
Wxt+1 + Uht + VM>t+1Drξt

)
(11)

= W cWoσ
(
Wxt+1 + Uht + V

(
Mt ◦

(
E −Dwξtξ

>
t D>e

)
+ Dwξtξ

>
t D>v

)>
Drξt

)
(12)

where {xt+1, ht} = at and {W c,Wo,W,U, V } = θ (can vary through time as
θt).

There are two ways to cast the memory control to an optimal control prob-
lem.

(1) Use single state variable st = [Mt.vectorize(), ξt], we can rewrite Mt =
(Dmst) .reshape() and ξt = Dξst then the system of dynamics can be rewritten
as single dynamic over st:

st+1 =
[
(Dmst) .reshape() ◦

(
E −DwDξst (Dξst)

>
D>e

)
+ DwDξst (Dξst)

>
D>v ,

W cWoσWxt+1 + Uht + V (Dmst) .reshape() ◦
(
E −DwDξst (Dξst)

>
D>e

)
+ DwDξst (Dξst)

>
D>v DrDξst

]
= f (st, θt)

Then the control signal is θt to be optimized and the dynamic can be con-
trolled by optimal control theory [8]. However, it poses several challenges such
as θt is very high dimensional and f (st, θt) is non-convex, hard to find global
optimum and θ should vary through time as θt (not recurrent anymore, can use
NSM or other fast-weight to generate θt).

(2) Only optimally control the first dynamic Eq. (1) and use neural network
to learn θ that satisfies the second dynamic Eq. (2). It seems that no one has
tried this approach in deep learning before. Thus, we will propose to use this
as a new framework to learn memory optimal control.

3



4 Memory Optimal Control Framework

We wish to solve the following optimal control problem

min
ξt,a∈Ξ

J (ξt,a) =
∑
a

Φa (MT,a) +
∑
a

∑
t

Lt (ξt,a,Mt,a, at)

subject to:

Mt+1,a = ft (Mt,a, ξt,a) , t = 1, T , a ∈ A (13)

For each instance of a, we can solve this optimal control problem using Pon-
tryagin’s Maximum Principle.

Theorem 1. Assume ft and Φ be sufficiently smooth in M. Assume further that
for each t, the set {ft (Mt, ξ) : ξ ∈ Ξt} and {Lt (Mt, ξ, at) : ξ ∈ Ξt} are convex.
Then, there exists co-state processes p∗ =

{
p∗t : t = 1, T

}
and optimal solution

ξ∗ =
{
ξ∗t : t = 1, T

}
such that the following holds for t = 1, T :

M∗t+1 = ∇pHt

(
M∗t , p

∗
t+1, ξ

∗
t

)
,M∗0 = M0 (14)

p∗t+1 = ∇MHt

(
M∗t , p

∗
t+1, ξ

∗
t

)
, p∗T = −∇Φ (MT ) (15)

Ht

(
M∗t , p

∗
t+1, ξ

∗
t

)
≥ Ht

(
M∗t , p

∗
t+1, ξt

)
: ∀ξ ∈ Ξt (16)

where H is the Hamiltonian function: Ht : RN×D × RN×D × Ξt → R by

Ht (M, p, ξ) = p · ft (M, ξ)− Lt (ξ,M, at) (17)

We can use method of successive approximations (MSA) to implement Pon-
tryagin’s Maximum Principle. Let assume given θ, a, we can find a possible
optimal set of control signal ξ∗ =

{
ξ∗t : t = 1, T

}
thanks to MSA, we need to

learn θ to be able to generate ξ∗while satisfying Eq. (2). It maybe possible if a
true optimal set of control signal exists as θ is basically a Turing Machine (it can
predict any sequence given strong supervision). The importance is θ is given
with ground truth output ξ∗ every timestep (no more delayed error signal), and
thus strongly supervised. We combine the MSA and Turing Machine training
into one algorithm (mini-batch version) 1.

The idea of the algorithm 1 is to alternatively find the control signal ξ∗ to
minimize the loss using global optimizer tool (Pontryagin’s Maximum Principle
is globally optimal given convexity) and find the parameter θ to satisfy the dy-
namics given ξ∗and external data. In other words, we want the Turing Machine
learn the optimal control solution. This may introduce some challenges:

• The computation cost of argmax operator. The cheapest way is to use

gradient ascent: ξk+1
t,a = ξkt,a + β

∂Ht(Mk
t,a,p

k
t+1,a,ξ

k
t,a)

∂ξkt,a

4



Algorithm 1 Memory Optimal Control Framework

1: Sample B sequences of training data
{
xt,a : t = 0, T

}
2: for a = 1, B do
3: Initialize ξ0a =

{
ξ0
t,a ∈ Ξt : t = 0, T − 1

}
4: Initialize M0

0,a,∈M
5: for k = 1,K do
6: for t = 0, T − 1 do
7: Mk

t+1,a = ft
(
Mk

t,a, ξ
k
t,a

)
8: end for
9: pkT,a = −∇Φ

(
Mk

T,a, xT,a
)

10: for t = T − 1, 0 do
11: pkt,a = ∇MHt

(
Mk

t,a, p
k
t+1,a, ξ

k
t,a

)
12: end for
13: for t = 0, T − 1 do
14: ξk+1

t,a = argmaxξ∈Ξt Ht

(
Mk

t,a, p
k
t+1,a, ξ

k
t,a

)
15: end for
16: end for
17: for t = 0, T − 1 do
18: ξ̂Kt+1,a = fθ

(
fread

(
MK

t,a, ξ
K
t,a

)
, xt,a

)
19: end for

20: Lξ =
∑T−1

t=1

∥∥∥ξ̂Kt,a − ξKt,a∥∥∥
21: θ = θ − α∂Lξ∂θ
22: end for

• Initializing a set of control signals (hundreds of timesteps) then optimizing
seems very hard. We can ease it with a mix strategy:

– Optimize using optimal control for only a random subset ξ� ⊂ ξ∗,
the other control signals are generated using Turing Machine

– Let’s Turing Machine optimize the loss function too

– If ξ� = ∅, it becomes normal training using backpropagation

5 Maximum Contribution Principle

Some motivations:

• It seems to have hidden relation to Free Energy Principle [2] and Least-
action Principle.

• The idea is simple: a rationale action is the one that on average contribute
to the final action (the one that associates with the error signal)

• Examples: we avoid to act randomly (contribution mean =0) or act no
thing (contribution = 0). Every action counts. It must direct toward the
final action. By doing so, the “energy” seems minimized.

5



• Contribution analysis is used recently:

– Contribution is used to measure memory capacity (first order deriva-
tive [7], second order derivative Fisher Information [3])

– Contribution is used to explain deep learning (how some visual fea-
ture affects output)

– Contribution is used in reward redistribution (TVT [6] uses memory
read weight as contribution, Rudder [1] uses Integrated Gradients as
contribution)

In memory control, the inner motivation is assumed to be Maximum Contribu-
tion Principle (MCP). The cost rate is defined as:

Lt (ξt,a,Mt,a, at) = −C (ξt,a, ξT,a) (18)

where C (ξt,a, ξT,a) measures the contribution of ξt,a towards ξT,a. Some obvious
bad controls that violate MCP:

• Do not use memory: ξt,a = 0, C (ξt,a, ξT,a) = 0

• Overwritten: ξt,a is overwritten by some ξt′,a with t′ > t, C (ξt,a, ξT,a) = 0.
When the memory is finite, overwriting is unavoidable. We need to choose
the least contribution to overwrite, this is aromatic when minimizing∑
a

∑
t
− C (ξt,a, ξT,a). Current overwriting such as least-used is heuristic

not optimal. Actually, overwriting to least-used memory slot loose rare
events.

However, C (ξt,a, ξT,a) is highly non-convex, hard to compute. We derive a lower

bound (easier to compute) for a class of contribution C (ξt, ξT ) =
∥∥∥∂nξT∂ξnt

∥∥∥ for

n = 1, 2. It is easy to see that for n = 1,

C (ξt, ξT ) =

∥∥∥∥∂ξT∂ξt
∥∥∥∥ (19)

=

∥∥∥∥ ∂ξT
∂ξt+k

∂ξt+k
∂ξt

∥∥∥∥ (20)

≥ σmin
(
∂ξT
∂ξt+k

)∥∥∥∥∂ξt+k∂ξt

∥∥∥∥ (21)

where k > 0. In optimal control problem Eq. (13), σmin

(
∂ξT
∂ξt+k

)
is independent

from ξt. The contribution to the last action can be maximized by maximizing
the contribution to some future action. The simplest bound is:

Lt (ξt,a,Mt,a, at) = −
∥∥∥∥∂ξt+1,a

∂ξt,a

∥∥∥∥ (22)

6



This bound is simple to compute and likely to be convex, which guarantees the
global optimum of using Pontryagin’s Maximum Principle.

For other classes of contribution, if we want to avoid computing C (ξt,a, ξT,a),
we may want to learn a neural approximation for this term. Given ξt,a, we can

train a (convex) neural network Ĉφ to predict C (ξt,a, ξT,a). As we can collect
the true C (ξt,a, ξT,a) when we observe ξT,a and ξT,a is actually a function of
ξt,a, the learning is doable. The the cost rate becomes:

Lt (ξt,a,Mt,a, at) = −Ĉφ (ξt,a) (23)

References

[1] Jose A Arjona-Medina, Michael Gillhofer, Michael Widrich, Thomas Un-
terthiner, Johannes Brandstetter, and Sepp Hochreiter. Rudder: Return
decomposition for delayed rewards. arXiv preprint arXiv:1806.07857, 2018.

[2] Karl Friston. The free-energy principle: a rough guide to the brain? Trends
in cognitive sciences, 13(7):293–301, 2009.

[3] Surya Ganguli, Dongsung Huh, and Haim Sompolinsky. Memory traces
in dynamical systems. Proceedings of the National Academy of Sciences,
105(48):18970–18975, 2008.

[4] David Ha and Jürgen Schmidhuber. World models. arXiv preprint
arXiv:1803.10122, 2018.

[5] Geoffrey E Hinton, Peter Dayan, Brendan J Frey, and Radford M Neal.
The” wake-sleep” algorithm for unsupervised neural networks. Science,
268(5214):1158–1161, 1995.

[6] Chia-Chun Hung, Timothy Lillicrap, Josh Abramson, Yan Wu, Mehdi
Mirza, Federico Carnevale, Arun Ahuja, and Greg Wayne. Optimizing
agent behavior over long time scales by transporting value. arXiv preprint
arXiv:1810.06721, 2018.

[7] Hung Le, Truyen Tran, and Svetha Venkatesh. Learning to remember more
with less memorization. In International Conference on Learning Represen-
tations, 2019.

[8] Qianxiao Li and Shuji Hao. An optimal control approach to deep learn-
ing and applications to discrete-weight neural networks. arXiv preprint
arXiv:1803.01299, 2018.

7


