
Chapter 2

Taxonomy for Memory in RNNs

2.1 Memory in Brain

Memory is a crucial part of any cognitive model studying the human mind. This
section briefly reviews memory types studied throughout the cognitive and neuro-
science literature. Fig. 2.1 shows a taxonomy of cognitive memory (Kotseruba and
Tsotsos, 2018).

2.1.1 Short-term Memory

Sensory memory Sensory memory caches impressions of sensory information af-
ter the original stimuli have ended. It can also preprocess the information before
transmitting it to other cognitive processes. For example, echoic memory keeps
acoustic stimulus long enough for perceptual binding and feature extraction pro-
cesses. Sensory memory is known to associate with temporal lope in the brain. In
the neural network literature, sensory memory can be designed as neural networks
without synaptic learning (Johnson et al., 2013).

Working memory Working memory holds temporary storage of information re-
lated to the current task such as language comprehension, learning, and reasoning
(Baddeley, 1992). Just like computer that uses RAM for its computations, the brain
needs working memory as a mechanism to store and update information to perform
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cognitive tasks such as attention, reasoning and learning. Human neuroimaging
studies show that when people perform tasks requiring them to hold short-term
memory, such as the location of a flash of light, the prefrontal cortex becomes ac-
tive (Curtis and D’Esposito, 2003). As we shall see later, recurrent neural networks
must construct some form of working memory to help the networks learn the task
at hand. As working memory is short-term (Goldman-Rakic, 1995), the working
memory in RNNs also tends to vanish quickly and needs the support from other
memory mechanisms to learn complex tasks that require long-term dependencies.

2.1.2 Long-term Memory

Motor/procedural memory The procedural memory, which is known to link
to basal ganglia in the brain, contains knowledge about how to get things done in
motor task domain. The knowledge may involve co-coordinating sequences of motor
activity, as would be needed when dancing, playing sports or musical instruments.
This procedural knowledge can be implemented by a set of if-then rules learnt for
a particular domain or a neural network representing perceptual-motor associations
(Salgado et al., 2012).

Semantic memory Semantic memory contains knowledge about facts, concepts,
and ideas. It allows us to identify objects and relationships between them. Semantic
memory is a highly structured system of information learnt gradually from the world.
The brain’s neocortex is responsible for semantic memory and its processing is seen
as the propagation of activation amongst neurons via weighted connections that
slowly change (Kumaran et al., 2016).

Episodic memory Episodic memory stores specific instances of past experience.
Different from semantic memory, which does not require temporal and spatial in-
formation, episodic remembering restores past experiences indexed by event time or
context (Tulving et al., 1972). Episodic memory is widely acknowledged to depend
on the hippocampus, acting like an autoassociate memory that binds diverse inputs
from different brain areas that represent the constituents of an event (Kumaran
et al., 2016). It is conjectured that the experiences stored in hippocampus trans-
fer to neocortex to form semantic knowledge as we sleep via consolidation process.
Recently, many attempts have been made to integrate episodic memory into deep
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Figure 2.1: Types of memory in cognitive models

learning models and achieved promising results in reinforcement (Mnih et al., 2015;
Blundell et al., 2016; Pritzel et al., 2017) and supervised learning (Graves et al.,
2016; Lopez-Paz et al., 2017; Le et al., 2018b).

2.2 Neural Networks and Memory

2.2.1 Introduction to Neural Networks

Feed-forward neural networks

A feed-forward neural network arranges neurons in layers with connections going
forward from one layer to another, creating a directed acyclic graph. That is, con-
nections going backwards or between nodes within a layer are prohibited. Each
neuron in the network is a computation unit, which takes inputs from outputs of
other neurons, then applies a weighted sum followed by a nonlinear transform, and
produces an output. The multilayer perceptron (MLP) is a commonly used feed-
forward neural network for classifying data or approximating an unknown function.
An example MLP is shown in Fig. 2.2, with three layers: input, output and a
single “hidden” layer. In order to distinguish linearly inseparable data points, the
activation function must be nonlinear. The weight of a connection, which resembles
synapse of the neocortex, is simply a coefficient by which the output of a neuron
is multiplied before being taken as the input to another neuron. Hence, the total
input to a neuron j is
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Figure 2.2: A multilayer perceptron with a single hidden-layer.

yj =
∑
i

wijxi + bj (2.1)

where xi is the output of a neuron i, wij is the weight of the connection from neuron
i to neuron j, and bj is a constant offset or bias. The output of neuron j, or xj,
is the result of applying an activation function to yj. The following lists common
activation functions used in modern neural networks,

sigmoid (z) = 1
1 + e−z

(2.2)

tanh (z) = ez − e−z

ez + e−z
(2.3)

relu (z) = max(z, 0) (2.4)

Given a set of training data with ground truth label for each data points, the network
is typically trained with gradient-based optimisation algorithms, which estimate the
parameters by minimising a loss function. A popular loss function is the average
negative log likelihood

L = − 1
N

N∑
i=1

logP (ŷi = yi|xi) (2.5)

where N is the number of training samples, xi and yi is the i-th data sample
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and its label, respectively, and ŷi is the predicted label. During training, forward
propagation outputs ŷi and calculates the loss function. An algorithm called back-
propagation, which was first introduced in (Rumelhart et al., 1988), computes the
gradients of the loss function L with respect to (w.r.t) the parameters θ = {wij, bj}.
Then, an optimisation algorithm such as stochastic gradient descent updates the
parameters based on their gradients

{
∂L
∂wij

, ∂L
∂bj

}
as follows,

wij := wij − λ
∂L
∂wij

(2.6)

bj := bj − λ
∂L
∂bj

(2.7)

where λ is a small learning rate.

Recurrent neural networks

A recurrent neural network (RNN) is an artificial neural network where connections
between nodes form a directed graph with self-looped feedback. This allows the
network to capture the hidden states calculated so far when activation functions
of neurons in the hidden layer are fed back to the input layer at every time step
in conjunction with other input features. The ability to maintain the state of the
system makes RNN especially useful for processing sequential data such as sound,
natural language or time series signals. So far, many varieties of RNN have been
proposed such as Hopfield Network (Hopfield, 1982), Echo State Network (Jaeger
and Haas, 2004) and Jordan Network (Jordan, 1997). Here, for the ease of analysis,
we only discuss Elman’s RNN model (Elman, 1990) with single hidden layer as
shown in Fig. 2.3.

An Elman RNN consists of three layers, which are input (x ∈ RN), hidden (h ∈ RD)
and output (o ∈ RM) layer. At each timestep, the feedback connection forwards the
previous hidden state ht−1 to the current hidden unit, together with the values from
input layer xt, to compute the current state ht and output value ot. The forward
pass begins with a specification of the initial state h0, then we apply the following
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Figure 2.3: A typical Recurrent Neural Network (Left) and its unfolded representa-
tion (Right). Each neuron at timestep t takes into consideration the current input
xt and previous hidden state ht−1 to generate the t-th output ot. W , U and V are
learnable weight matrices of the model.

update equations

ht = f (ht−1W + xtU + b) (2.8)

ot = g (htV + c) (2.9)

where b ∈ RD and c ∈ RM are the bias parameters. U ∈ RN×D, V ∈ RD×M and
W ∈ RD×D are weight matrices for input-to-hidden, hidden-to-output and hidden-to-
hidden connections, respectively. f and g are functions that help to add non-linearity
to the transformation between layers. For classification problems, g is often chosen
as the softmax function and the output ot represents the conditional distribution of
t-th output given previous inputs. The final output ŷt is the label whose probability
score is the highest. By repeating the updates, one can map the input sequence
x = {x1, x2, ..., xT} to an output sequence ŷ = {ŷ1, ŷ2, ..., ŷT}. The total loss for
a given sequence x paired with a ground-truth sequence y = {y1, y2, ..., yT} would
then be the sum of the losses over all the timesteps

L (y|x) =
T∑
t=1
Lt (yt|x1, x2, ..., xt) = −

T∑
t=1

logP (ŷt = yt|x1, x2, ..., xt)

The loss function can be minimised by using gradient descent approach. The deriva-
tives w.r.t the parameters can be determined by the Back-Propagation Through
Time algorithm (Werbos, 1990). RNNs are widely used in sequential tasks such
as language modeling (Mikolov et al., 2010), handwriting generation (Graves, 2013)
and speech recognition (Graves et al., 2013). RNNs demonstrate better performance
than other classical approaches using Hidden Markov Model (HMM) or Conditional
Random Fields (CRFs).
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2.2.2 Semantic Memory in Neural Networks

Neural networks learn structured knowledge representation from the data by adjust-
ing connection weights amongst the units in the network under supervised training
paradigms (Hinton et al., 1986; Rumelhart et al., 1988; Plunkett and Sinha, 1992).
The connection weights capture the semantic structure of the domain under mod-
eling (McClelland et al., 1995; Rogers and McClelland, 2004). The trained model
generalises to novel examples rather than just naively memorising training items.
However, modern deep learning models are often massively over-parameterised and
thus prone to overfitting, even to noise (Zhang et al., 2016b). Further investigations
indicate that although deep networks may employ brute-force memorising strategy,
they should operate in a fashion that can perform inductive generalisation (Arpit
et al., 2017; Krueger et al., 2017). Unfortunately, since all of these arguments are
validated empirically or via simulations, no theoretical principles governing semantic
knowledge extraction were given.

The lack of theoretical guarantee remained until recently when Saxe et al. (2019)
confirmed the existence of semantic memory in neural network by theoretically de-
scribing the trajectory of knowledge acquisition and organisation of neural semantic
representations. The paper is restricted to a simple linear neural network with one
hidden layer. The network is trained to correctly output the associated properties
or features of the input items (e.g., dog →bark, horse →big). Each time a training
sample i is presented as {xi, yi}, the weights of the networkW1 and W2 are adjusted
by a small amount to gradually minimise the squared error loss L = ‖yi − ŷi‖2. The
parameter update rule is derived via standard back propagation as follows,

∆W1 = λW>
2 (yi − ŷi)x>i (2.10)

∆W2 = λ (yi − ŷi) (W1xi)> (2.11)

where λ is the learning rate. We are interested in estimating the total weight change
after epoch t, which can be approximated, when λ� 1, as the following,

∆W1 (t) ≈ λPW2 (t)> (Σyx −W2 (t)W1 (t)Σx) (2.12)

∆W2 (t) ≈ λP (Σyx −W2 (t)W1 (t)Σx)W1 (t)> (2.13)
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where P is the number of training samples; Σx = E
[
xx>

]
and Σyx = E

[
yx>

]
are

input and input-output correlation matrices, respectively. We can take the contin-
uum limit of this difference equation to obtain the following system of differential
equations

τ
d

dt
W1 = W>

2 (Σyx −W2W1Σ
x) (2.14)

τ
d

dt
W2 = (Σyx −W2W1Σ

x)W>
1 (2.15)

where τ = 1
Pλ

. To simplify the equations, we assume Σx = I and apply reparametri-
sation trick to obtain

τ
d

dt
W 1 = W

>
2

(
S −W 2W 1

)
(2.16)

τ
d

dt
W 2 =

(
S −W 2W 1

)
W
>
1 (2.17)

where S is the diagonal matrix in the singular value decomposition of Σyx = USV >;
W 1 and W 2 are new variables such that W1 = RW 1V

> and W2 = UW 2R with an
arbitrary orthogonal matrix R. When W 1 (0) and W 2 (0) are initialised with small
random weights, we can approximate them with diagonal matrices of equal modes.
A closed form solution of the scalar dynamic corresponding to each mode of Eqs.
(2.16) and (2.17) can be derived as follows,

aα (t) = sαe
2sαt/τ

e2sαt/τ − 1 + sα/aα (0) (2.18)

where aα is a diagonal element of the time-dependent diagonal matrix A (t) such
that A (t) = W 2 (t)W 1 (t) . Inverting the change of variables yields

W1 (t) = Q
√
A (t)V > (2.19)

W2 (t) = U
√
A (t)Q−1 (2.20)

where Q is an arbitrary invertible matrix. If the initial weights are small, then the
matrix Q will be close to a rotation matrix. Factoring out the rotation, the hidden
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representation of item i is

hαi (t) =
√
aα (t)vαi (2.21)

where vαi = V > [α, i]. Hence, we obtain a temporal evolution of internal represen-
tations h of the deep network. By using multi-dimensional scaling (MDS) visual-
isation of the evolution of internal representations over developmental time, Saxe
et al. (2019) demonstrated a progressive differentiation of hierarchy in the evolu-
tion, which matched the data’s underlying hierarchical structure. When we have
the explicit form of the evolution (Eq. (2.21)), this matching can be proved as an
inevitable consequence of deep learning dynamics when exposed to hierarchically
structured data (Saxe et al., 2019).

2.2.3 Associative Neural Networks

Associative memory is used to store associations between items. It is a general
concept of memory that spans across episodic, semantic and motor memory in the
brain. We can use neural networks (either feed-forward or recurrent) to implement
associative memory. There are three kinds of associative networks:

• Heteroassociative networks storeQ pair of vectors {x1 ∈ X , y1 ∈ Y}, ...,
{
xQ ∈

X , yQ ∈ Y
}
such that given some key xk, they return value yk.

• Autoassociative networks are a special type of the heteroassociative networks,
in which yk = xk (each item is associated with itself).

• Pattern recognition networks are also a special case where xk is associated
with a scalar k representing the item’s category.

Basically, these networks are used to represent associations between two vectors.
After two vectors are associated, one can be used as a cue to retrieve the other. In
principle, there are three functions governing an associative memory:

• Encoding function ⊗ : X × Y →M associates input items into some form of
memory traceM.

• Trace composition function ⊕ :M×M → M combines memory traces to
form the final representation for the whole dataset.
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• Decoding function • : X ×M → Y produces a (noisy) version of the item
given its associated.

Different models employ different kinds of functions (linear, non-linear, dot product,
outer product, tensor product, convolution, etc.). Associative memory concept is
potential to model memory in the brain (Marr and Thach, 1991). We will come
across some embodiment of associative memory in the form of neural networks in
the next sections.

2.3 The Constructions of Memory in RNNs

2.3.1 Attractor dynamics

Attractor dynamics denotes neuronal network dynamics which is dominated by
groups of persistently active neurons. In general, such a persistent activation asso-
ciates with an attractor state of the dynamics, which for simplicity, can take the
form of fixed-point (Amit, 1992). This kind of network can be used to implement
associative memory by allowing the network’s attractors to be exactly those vectors
we would like to store (Rojas, 2013). The approach supports memory for the items
per se, and thus differs from semantic memory in the sense that the items are often
stored quickly and what being stored cannot represent the semantic structure of
the data. Rather, attractor dynamics resembles working and episodic memory. Like
episodic memory, it acts as an associative memory, returning stored value when trig-
gered with the right clues. The capacity of attractor dynamics is low, which reflects
the short-term property of working memory. In the next part of the sub-section, we
will study these characteristics through one embodiment of attractor dynamics.

Hopfield network

The Hopfield network, originally proposed in 1982 (Hopfield, 1982), is a recurrent
neural network that implements associative memory using fix-points as attractors.
The function of the associative memory is to recognise previously learnt input vec-
tors, even in the case where some noise has been added. To achieve this function,
every neuron in the network is connected to all of the others (see Fig. 2.4 (a)).
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Each neuron outputs discrete values, normally 1 or −1, according to the following
equation

xi (t+ 1) = sign
 N∑
j=1

wijxj (t)
 (2.22)

where xi (t) is the state of i-th neuron at time t and N is the number of neurons.
Hopfield network has a scalar value associated with the state of all neurons x, referred
to as the "energy" or Lyapunov function,

E (x) = −1
2

N∑
i=1

N∑
j=1

wijxixj (2.23)

If we want to store Q patterns xp, p = 1, 2, ..., Q, we can use the Hebbian learning
rule (Hebb, 1962) to assign the values of the weights as follows,

wij =
Q∑
p=1

xpix
p
j (2.24)

which is equivalent to setting the weights to the elements of the correlation matrix
of the patterns1.

Upon presentation of an input to the network, the activity of the neurons can be
updated (asynchronously) according to Eq. (2.22) until the energy function has
been minimised (Hopfield, 1982). Hence, repeated updates would eventually lead
to convergence to one of the stored patterns. However, the network will possibly
converge to spurious patterns (different from the stored patterns) as the energy in
these spurious patterns is also a local minimum.

The capacity problem

The memorisation of some pattern can be retrieved when the network produces the
desired vector xp such that x (t+ 1) = x (t) = xp. This happens when the crosstalk
computed by

1As an associative memory, Hopfield network implements ⊗, ⊕, • by outer product, addition
and nonlinear recurrent function, respectively.
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(a) Hopfield Network (b) Liquid State Machine

Figure 2.4: (a) Hopfield network with five neurons. (b) Structure of a Liquid State
Machine M . The machine wants to transform input stream u(·) into output stream
y(·) using some dynamical system LM (the liquid).

Q∑
q=1,q 6=p

xq (xp · xq) (2.25)

is less than N . If the crosstalk term becomes too large, it is likely that previously
stored patterns are lost because when they are presented to the network, one or
more of their bits are flipped by the associative computation. We would like to keep
the probability that this could happen low, so that stored patterns can always be
recalled. If we set the upper bound for one bit failure at 0.01, the maximum capacity
of the network is Q ≈ 0.18N (Rojas, 2013). With this low capacity, RNNs designed
as attractor dynamics have difficulty handling big problems with massive amount of
data.

2.3.2 Transient Dynamics

One major limitation of memorising by attractor mechanisms is the incapability of
remembering sequences of past inputs. This demands a new paradigm to explain
the working memory mechanism that enable RNNs to capture sequential depen-
dencies and memorise information between distance external stimuli. Within this
new paradigm, the trajectories of network states should become the main carriers of
information about external sensory stimuli. Recent proposals (Maass et al., 2002;
Maass, 2011; Jaeger and Haas, 2004) have suggested that an arbitrary recurrent net-
work could store information about recent input sequences in its transient dynamics
despite the presence of attractors (the pattern might or might not converge to the
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attractors). A useful analogy is the surface of a liquid. Transient ripples on the
surface can encode information about past objects that were thrown in even though
the water surface has no attractors (Ganguli et al., 2008). In the light of transient
dynamics, RNNs carry past information to serve a given task as a working memory.

Liquid State Machines

Liquid State Machines (LSMs) (Maass et al., 2002) use a dynamic reservoir/liquid
(LM), which consists of nodes randomly connected to each other, to handle time-
series data. The purpose is to map an input function of time u (t)–a continuous
sequence of disturbances, to an output function y (t) that provides a real-time anal-
ysis of the input sequence. In order to achieve that, we assume that at every time t,
LM generates an internal “liquid state” xM (t), which constitutes its current response
to preceding perturbations u(s) for s ≤ t. After a certain time-period, the state of
the liquid xM (t) is read as input for a readout network fM , which by assumption,
has no temporal integration capability of its own. This readout network learns to
map the states of the liquid to the target outputs as illustrated in Fig. 2.4 (b).

All information about the input u(s) from preceding time points s ≤ t that is needed
to produce a target output y(t) at time t has to be contained in the current liquid
state xM (t). LSMs allow realisation of large computational power on functions of
time even if all memory traces are continuously decaying. Instead of worrying about
the code and location where information about past inputs is stored, the approach
focuses on addressing the separation question: for which later time point t will any
two significantly different input functions of time u (t) and v (t) cause significantly
different liquid states xMu (t) and xMv (t) (Maass, 2011).

Most implementations of LSMs use the reservoir of untrained neurons. In other
words, there is no need to train the weights of the RNN. The recurrent nature of
the connections fuses the input sequence into a spatio-temporal pattern of neuronal
activation in the liquid and computes a large variety of nonlinear functions on the
input. This mechanism is theoretically possible to perform universal continuous
computations. However, separation and approximation properties must be fulfilled
for the system to work well. Similar neural network design can be found in Echo
state networks (Jaeger and Haas, 2004). A Liquid State Machine is a particular
kind of spiking neural networks that more closely mimics biological neural networks
(Maass, 1997).
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Memory trace of recurrent networks

When viewing recurrent networks as transient dynamics, one may want to measure
the lifetimes of transient memory traces in the networks. Ganguli et al. (2018)
studied a discrete time network whose dynamics is given by

xi (n) = f ([Wx (n− 1)]i + vis (n) + zi (n)) , i = 1, ..., N (2.26)

Here, a scalar time-varying signal s(n) drives an RNN of N neurons. x(n) is the
network state at n-th timestep, f(·) is a general sigmoidal function, W is an N ×N
recurrent connectivity matrix, and v is a vector of feed-forward connections encoding
the signal into the network. z(n) denotes a zero mean Gaussian white noise with
covariance 〈zi(k1), zj(k2)〉 = εδk1,k2δi,j.

The authors built upon Fisher information to construct useful measures of the ef-
ficiency with which the network state x(n) encodes the history of the signal s (n),
which can be derived as

J (k) = v>W k>
(
ε
∞∑
k=0

W kW k>
)−1

W kv (2.27)

where J (k) measures the Fisher information that x(n) retains about a signal entering
the network at k time steps in the past. For a special case of normal networks having
a normal connectivity matrix W , Eq. (2.27) simplifies to

J (k) =
N∑
i=1

v2
i |λi|

2k
(
1− |λi|2

)
(2.28)

where λi is the i-th eigenvalue ofW . For large k, the decay of the Fisher information
is determined by the magnitudes of the largest eigenvalues and it decays exponen-
tially. Similar findings with different measurements on the memory trace in modern
recurrent networks are also found in a more recent work (Le et al., 2019).

2.4 External Memory for RNNs

Recurrent networks can in principle use their feedback connections to store repre-
sentations of recent input events in the form of implicit memory (either attractor



2.4. External Memory for RNNs 23

or transient dynamics). Unfortunately, from transient dynamics perspective, the
implicit memory tends to decay quickly (Ganguli et al., 2008; Le et al., 2019). This
phenomenon is closely related to gradient vanishing/exploding problems (Bengio
et al., 1994; Hochreiter and Schmidhuber, 1997; Pascanu et al., 2013) which often
occur when training RNNs with gradient-based algorithms such as Back-Propagation
Through Time (Williams and Zipser, 1989; Werbos, 1990). A solution is to equip
RNNs with external memory to cope with exponential decay of the implicit short-
term memory. The external memory enhances RNNs with stronger working (Hochre-
iter and Schmidhuber, 1997; Cho et al., 2014b; Graves et al., 2014, 2016) or even
episodic-like memory (Graves et al., 2014; Santoro et al., 2016). We will spend
the next sections to analyse different types of external memory and their memory
operation mechanisms. Examples of modern recurrent neural networks that utilise
external memory are also discussed.

2.4.1 Cell Memory

Despite the fact that RNNs offer working memory mechanisms to handle sequential
inputs, learning what to put in and how to utilise the memory is challenging. Back-
Propagation Through Time (Williams and Zipser, 1989; Werbos, 1990) is the most
common learning algorithm for RNNs, yet it is inefficient in training long sequences
mainly due to insufficient or decaying backward error signals. This section will re-
view the analysis of this problem and study a group of methodologies that overcome
the problem through the use of cell memory and gated operation.

Hochreiter’s analysis on gradient vanishing/exploding problems

Let us assume that the hidden layer of an RNN has n neurons. With differen-
tiable activation function fi, the activation of a neuron i at step t of the recurrent
computation is as follow,

yi (t) = fi

∑
j

wijy
j (t− 1)

 (2.29)

= fi (neti (t)) (2.30)
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Figure 2.5: Error back flow from ϑu (t) to ϑv (t− q) in the computation graph. Each
computation node has n children. Each product term corresponds to a computation
path of depth q from node u to v. The sum of nq−1 products is the total error.
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The backpropagated error signal for neuron j at step t is

ϑj (t) = f ′j (netj (t))
∑
i

wijϑi (t+ 1) (2.31)

The error occurring at an arbitrary neuron u at time step t (ϑu (t)) is backpropagated
through time for q timesteps to an arbitrary neuron v (ϑv (t− q)). We can measure
the contribution of the former to the latter as the following,

∂ϑv (t− q)
∂ϑu (t) =

f
′
v (netv (t− 1))wuv ; q = 1

f ′v (netv (t− q))∑n
l=1

∂ϑl(t−q+1)
∂ϑu(t) wlv ; q > 1

(2.32)

By induction, we can obtain expressive form of the recursive Eq. (2.32) as

∂ϑv (t− q)
∂ϑu (t) =

n∑
l1=1

...
n∑

lq−1=1

q∏
m=1

f ′lm (netlm (t−m))wlmlm−1 (2.33)

where lq = v and l0 = u. The computation can be visually explained through a
drawing of the computation graph as in Fig. 2.5.

It is obvious to realise that if
∣∣∣f ′lm (netlm (t−m))wlmlm−1

∣∣∣ is greater (smaller) than
1 for all m, then the largest product increases (decreases) exponentially with q,
which represents the exploding and vanishing gradient problems in training neural
networks. These problems are critical since they prevent proper update on the
weights of the model, and thus freeze or disturb the learning process. With nonlinear
activation functions such as sigmoid, the term

∣∣∣f ′lm (netlm)wlmlm−1

∣∣∣ goes to zero when
wlmlm−1 →∞ and is less than 1 when

∣∣∣wlmlm−1

∣∣∣ < 4, which implies vanishing gradient
tends to occur with nonlinear activation function.

We can also rewrite Eq. (2.32) in matrix form for q > 1 as follows,

∂ϑv (t− q)
∂ϑu (t) = W>

u F
′ (t− 1)

q−1∏
m=2

(WF ′ (t−m))Wvf
′
v (netv (t− q)) (2.34)

where the weight matrixW have its elementsWij = wij. Wu andWv are u’s incoming
weight vector and v’s outgoing weight vector, respectively, such that [Wu]i = wui and
[Wv]i = wvi. F ′ (t−m) is a diagonal matrix whose diagonal elements F ′ (t−m)ii =
f ′i (neti (t−m)). Using a matrix norm ‖·‖A compatible with vector norm ‖·‖p, we
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define

f ′max := max
m=1,...,q

{‖F ′ (t−m)‖A} (2.35)

By applying norm sub-multiplicativity and using the inequality

∣∣∣xTy∣∣∣ ≤ n ‖x‖∞ ‖y‖∞ ≤ n ‖x‖p ‖y‖p ,

we obtain a weak upper bound for the contribution

∣∣∣∣∣∂ϑv (t− q)
∂ϑu (t)

∣∣∣∣∣ ≤ n (f ′max ‖W‖A)q (2.36)

This result confirms the exploding and vanishing gradient problems since the error
backprob contribution decays (when f ′max ‖W‖A < 1) or grows (when f ′max ‖W‖A
>1) exponentially with q. More recent analyses on the problems are presented by
Bengio et al., (1994) and Pascanu et al., (2013).

Problem with naive solution

When analysing a single neuron j with a single connection to itself, avoiding the
exploding and vanishing gradient problems requires

f ′j (netj (t))wjj = 1 (2.37)

In this case, the constant error flow is enforced by using linear function fj and
constant activation (e.g., fj (x) = x with ∀x and setting wjj = 1). These properties
are known as the constant error carousel (CEC). The strict constraint makes this
solution unattractive because it limits computation capacity of RNNs with linear
activation. Even worse, neuron j is connected to other neurons as well, which makes
thing complicated. Let us consider an additional input weight wji connecting neuron
i to j. wji is learnt to keep relevant external input from i such that wjiyi > 0 when
the input signal yi is relevant. Assume that the loss function is reduced by keeping
neuron j active (> 0) for a while between two occurrences of two relevant inputs.
During that period, activation of neuron j is possibly disturbed since with a fixed
wji, wjiyi < 0 with irrelevant inputs. Since yj (t) = fj (wjjyj (t− 1) + wjiy

i (t− 1))
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where fj is linear, yj (t− 1) is kept constant and yi (t− 1) scales with the external
input, it is likely to deactivate neuron j. Hence, if naively following CEC, learning
a wji to capture relevant inputs while protecting neuron j from disturbances of
irrelevant inputs is challenging (input weight conflict (Hochreiter and Schmidhuber,
1997)). Similar problem happens with the output weight (output weight conflict).
These conflicts make the learning hard, and require a more flexible mechanism for
controlling input/output weight impact conditioned on the input signal.

The original Long Short-Term Memory (LSTM)

Hochreiter and Schmidhuber (1997) originally proposed LSTM using multiplicative
gate units and a memory cell unit to overcome the weight conflicts while following
CEC. The idea is to apply CEC to neurons specialised for memorisation, each of
which has an internal state independent from the activation function. This sep-
aration between memorisation and computation is essential for external memory
concept. Besides, to control input/output weight impact, gate units conditioned on
the inputs are multiplied with the incoming/outgoing connections, modifying the
connection value through time. In particular, if a neuron cj becomes cell memory,
its output is computed as

ycj (t) = youtj (t)h
(
scj (t)

)
(2.38)

where youtj (t) is the output gate, h is a differentiable function for scaling down the
neuron’s output, and scj captures past information by using the dynamics

scj (0) = 0 (2.39)

scj (t) = yfgj (t) scj (t− 1) + yinj (t) f
(
netcj (t)

)
for t > 0 (2.40)

where yinj (t) is the input gate, yfgj (t) is the (optional) forget gate and f is the
activation function, which can be nonlinear. Without forget gate, cj can be viewed
as a neuron with an additional fixed self-connection. The computation paths that
mainly pass through this special neuron preserve the backward error. The remaining
problem is to protect this error from disturbance from other paths. The gates are
calculated as
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ygj (t) = fgj

(∑
u

wgjuy
u (t− 1)

)
(2.41)

where g can represent input, output and forget gate. The gates are adaptive accord-
ing to the input from other neurons, hence, it is possible to learn

{
wgju

}
to resolve

the input/output weight conflict problem.

Although the cell memory provides a potential solution to cope with training RNN
over long time lag, unfortunately, in practice, the multiplicative gates are not good
enough to overcome a fundamental challenge of LSTM: the gates are not coordinated
at the start of training, which can cause scj to explode quickly (internal state drift).
Various variants of LSTM have been proposed to tackle the problem (Greff et al.,
2016). We will review some of them in Chapter 3.

Cell memory as external memory

From Eq. (2.40), we can see the internal state of the cell memory holds two types
of information: (i) the previous cell state and (ii) the normal state of RNN, which
is the activation of current computation. Therefore, the cell state contains a new
form of external memory for RNNs. The size of the memory is often equal the
number of hidden neurons in RNNs and thus, cell memory is also known as vector
memory. The memory supports writing and reading mechanisms implemented as
gated operations in yinj (t) and youtj , respectively. They control how much to write
to and read from the cell state. With the cell state, which is designed to keep
information across timesteps, the working memory capacity of LSTM should be
greater than that of RNNs. The memory reading and writing are also important
to determine the memory capacity. For instance, if writing irrelevant information
too often, the content in the cell state will saturate and the memory fails to hold
much information. Later works make use of the gating mechanism to build skip-
connections between inputs (a source of raw memory) and neurons in higher layers
(Srivastava et al., 2015; He et al., 2016), opening chance to ease the training of very
deep networks.
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2.4.2 Holographic Associative Memory

The holographic associative memory (HAM) roots its operation on the principle of
optical holography, where two beams of light are associated with one another in a
holograms such that reconstruction of one original beam can be made by present-
ing another beam. Recall that the capacity of associative memory using attractor
dynamics is low. To maintain Q pairs of key-value (in Hopfield network, value is
also key), it requires N2 weight storage where Q ≈ 0.18N . HAM presents a solution
to compress the key-values into a fixed size vector via Holographic Reduced Repre-
sentation (HRR) without substantial loss of information (Plate, 1995). This can be
done in real or complex domain using circular convolution or element-wise complex
multiplication for the encoding function (⊗), respectively. The compressed vector
(M), as we shall see, can be used as external memory for RNNs.

Holographic Reduced Representation

Consider a complex-valued vector key x ∈ CN ,

x =
[
xa [1] eixφ[1], ..., xa [N ] eixφ[N ]

]
(2.42)

The association encoding is computed by

m = x~ y (2.43)

=
[
xa [1] ya [1] ei(xφ[1]+yφ[1]), ..., xa [N ] ya [N ] ei(xφ[N ]+yφ[N ])

]
(2.44)

where ~ is element-wise complex multiplication, which multiplies the moduli and
adds the phases of the elements. Trace composition function is simply addition

m = x1 ~ y1 + x2 ~ y2 + ...+ xQ ~ yQ (2.45)

Although the memory m is a vector with the same dimension as that of stored
items, it can store many pairs of items since we only need to store the information
that discriminates them. The decoding function is multiplying an inverse key x−1 =[
xa [1]−1 e−ixφ[1], ..., xa [N ]−1 e−ixφ[N ]

]
with the memory as follows,
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ỹ = x−1 ~m (2.46)

= x−1 ~

(∑
∀k
xk ~ yk

)
(2.47)

= y + x−1 ~

 ∑
∀k:xk 6=x

xk ~ yk
 (2.48)

The second term in Eq. (2.48) is noise and should be minimised. Under certain
conditions, the noise term has zero mean (Plate, 1995). One way to reconstruct
better is to pass the retrieved vector through an auto-associative memory to correct
any errors.

Redundant Associative Long Short-Term Memory

One recent attempt to apply HRR to LSTM is the work by Danihelka et al. (2016).
The authors first propose Redundant Associative Memory, an extension of HRR
with multiple memory traces for multiple transformed copies of each key vector. In
particular, each key vector will be transformed S times using S constant random
permutation matrix Ps. Hence, we obtain the memory trace cs for the s-th copy

cs =
∑
∀k

(
Psx

k
)
~ yk (2.49)

The k-th value is retrieved as follows,

ỹk = 1
S

S∑
s=1

(
Psxk

)
~ cs (2.50)

= yk +
∑
k′ 6=k

yk
′
~

1
S

S∑
s=1

Ps
[
xk ~ xk

′] (2.51)

where Psxk and xk are the complex conjugates of Psxk and xk, respectively, which
are equal to the inverses if the modulus xka = 1. Since permuting the key decorrelates
the retrieval noise, the noise term has variance O

(
Q
S

)
and increase the number of

copies will enhance retrieval quality.

Applying the idea to LSTM, we can turn the cell memory to a holographic memory
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by encoding the term containing input activation in Eq. (2.40) before added up to
the cell memory. The network learns to generate the key xk and the inverse key
(x−1)k for k-th timestep. It should be noted that the inverse key at k-th timestep
can associate to some preceding key. Following Redundant Associative Memory ex-
tension, multiple copies of cell memory are employed. The cell state will be decoded
to retrieve some past input activation necessary for current output (Danihelka et al.,
2016). Then the decoded value will be multiplied with the output gate as in Eq.
(2.38).

2.4.3 Matrix Memory

Correlation matrix memory

Correlation Matrix Memory (CMM) stores associations between pairs of vectors
using outer product as the encoding function. Although the purpose looks identical
to that of attractor dynamics, CMM is arranged differently using feed-forward neural
network without self-loop connections. The memory construction (⊗ + ⊕) follows
Hebbian learning

M =
Q∑
i=1

yix
>
i (2.52)

where Q is the number of stored patterns, xi and yi are the i-th key-value pair. The
memory retrieval (•) is simply dot product

ỹj = Mxj (2.53)

=
 Q∑
i=1

yix
>
i

xj (2.54)

=
Q∑

i=1,i 6=j
yix
>
i xj + yj ‖xj‖2 (2.55)

If the keys are orthonormal, then the retrieval is exact. Actually, linear independence
is enough for exact retrieval. In this case, WidrowHoff learning rule should be used.

When the stored values are binary vectors, a threshold function is applied. The
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capacity for binary CMM is heavily dependent on the sparsity of the patterns (the
sparser the better). In general, CMM offers a capacity that is at least comparable
to that of the Hopfield model (Baum et al., 1988).

Fast-weight

Fast-weights refer to synapses that change slower than neuronal activities but much
faster than the standard slow weights. These fast weights form temporary memories
of the recent past that support the working memory of RNNs (Hinton and Plaut,
1987; Schmidhuber, 1992; Ba et al., 2016). In a recent fast-weight proposal (Ba
et al., 2016), the memory is similar to a correlation matrix memory with decaying
factor to put more weight on the recent past. In particular, the fast memory weight
matrix A is computed as follows,

A (t) = λA (t− 1) + ηh (t)h (t)> (2.56)

where λ and η are the decay and learning rate, respectively. h (t) is the hidden
state of the RNN and also the pattern being stored in the associative memory. The
memory is used to iteratively refine the next hidden state of RNN as the following,

hs+1 (t+ 1) = f ([Wh (t) + Cx (t)] + A (t)hs (t+ 1)) (2.57)

where h0 (t+ 1) = f (Wh (t) + Cx (t)), following the ordinary dynamics of RNNs
and hs (t+ 1) is the hidden state at s-th step of refinement.

Tensor product representation

Tensor product representation (TPR) is a mechanism to store symbolic structures.
It shares common properties with CMM when the tensor is of order 2, in which
tensor product is equivalent to outer product. In TPR, relations between concepts
are described by the set of filler-role bindings. The vector space of filler and role are
denoted as VF and VR, respectively. The TPR is defined as a tensor T in a vector
space VF ⊗ VR, where ⊗ is the tensor product operator, which is computed as
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A

B C

(a) Tree structure encoded by TPR (b) Kanerva's SDM

Figure 2.6: (a) Example of a tree encoded by TPR. (b) SDM’s memory write (red)
and read (blue) access. The read and write involve all memory locations around the
queried points.

T =
∑
i

fi ⊗ ri (2.58)

where fi and ri are vectors representing some filler and role, respectively. The tensor
dot product • is used to decode the memory as follows,

fj = T • rj (2.59)

For example, the following 4 concepts have relations: dog(bark) and horse(big) in
which the set of filler is F = {bark, horse} and the set of role is R = {bark, big}.
The TPR of these concepts is

T = fdog ⊗ rbark + fhorse ⊗ rbig (2.60)

Or we can encode a tree structure as in Fig. 2.6 (a) by the following operations:

T = A⊗ r0 ⊗+ (B ⊗ r0 + C ⊗ r1)⊗ r1 (2.61)

= A⊗ r0 ⊗+B ⊗ r0 ⊗ r1 + C ⊗ r1 ⊗ r1 (2.62)

= A⊗ r0 ⊗+B ⊗ r01 + C ⊗ r11 (2.63)

This mechanism allows storing symbolic structures and grammars and thus supports
reasoning. For further details, we refer readers to the original work (Smolensky,
1990) and recent application to deep learning (Schlag and Schmidhuber, 2018).
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2.4.4 Sparse Distributed Memory

Matrix memory is a direct extension to vector memory for RNNs. There are two
ways to build a matrix memory: correlation matrix memory (or tensor memory) and
sparse distributed memory. While the former focuses on storing the associations
amongst items (e.g., Hopfield network, Holographic memory and CMM), the latter
aims to store each item as a high-dimensional vector, which is closer to Random
Access Memory in computer architecture. Because each vector is physically stored in
a memory slot, we also refer to this model as slot-based memory. Sparse distributed
memory (SDM) can represent correlation matrix memory, computer memory, feed-
forward artificial neural networks and associative-memory models of the cerebellum.
Such a versatility naturally results in SDM’s applications to RNN as one form of
external memory.

Kanerva memory model

In 1988, Pentti Kanerva introduced the SDM as a new approach to model human
long-term memory (Kanerva, 1988). The model revolves around a simple idea that
the distances between concepts in our minds correspond to the distances between
points of a high-dimensional space. As we, when hinted by key signals, tend to
remember specific things such as individual, object, scene and place, the brain must
make the identification nearly automatic, and high-dimensional vectors as internal
representations of things do that. Another important property of high dimensional
spaces is that distance between two random points should be far, which allows
inexact representation of the point of interest. In other words, using long vectors to
store items enables a fault-tolerant and robust memory.

The SDM stores items (binary vectors) in a large number of hard locations or mem-
ory slots whose addresses (ma) are given by binary strings of length D, randomly
distributed throughout the address space {0, 1}D. Input to the memory consists
of two binary patterns, an address pattern (location to be accessed) and a content
pattern (item to be stored). The pattern is called self-addressing when its content is
also its address. Furthermore, in SDM, each memory slot m is armed with a vector
of counters mc initialised to 0 with the same length of the content. The memory
operations are based on similarity between the addresses.
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Algorithm 2.1 Memory writing in SDM
Require: input x and SDM
1: Find a set of chosen locations M(x) using Eq. (2.64)
2: for each m in M(x) do
3: for i = 1, D do
4: if xc[i] == 1 then
5: mc[i] += 1
6: else
7: mc[i] −= 1
8: end if
9: end for
10: end for

Memory writing When storing input item x = (xa, xc) to the SDM, the address
pattern xa is compared against all memory location addresses. Relevant physical
locations to consider are those which lie within a hypersphere of radius r centered
on the address pattern point

M (x) = {m : d (ma, xa) < r} (2.64)

where d is some similarity measure between 2 vectors. In the original model, Kanerva
used Hamming distance. The content is distributed in the set of locations M (x) as
in Algo. 2.1.

Memory reading Basically, reading from any point in the memory space pools
the data of all nearby locations. Given a cue address x′a, contents of the counters at
locations near x′a are summed and thresholded at zero to return the binary content.
The proximity criteria still follows Eq. (2.64). The reading mechanism allows SDM
to retrieve data from imprecise or noisy cues. Fig. 2.6 (b) visualises the memory
access behaviors.

The assumption underlying the original SDM are: (i) the location addresses are
fixed, and only the contents of the locations are modifiable, (ii) the locations are
sparse and distributed across the address space {0, 1}D (e.g., randomly sample 106

addresses from an address space of 1000 dimensions ). These assumptions make the
model perform well on storing random input data.

SDM as an associative matrix memory We can implement SDM by using
three operations of associative memory. The minimum setting for this implementa-
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tion includes:

• A hard-address matrix A ∈ BN×D where N and D are the numbers of memory
locations and the dimension of the address space, respectively.

• A counter (content) matrix C ∈ BN×D.

• Cosine similarity is used to measure proximity.

• Threshold function y that maps distances to binary values:y (d) = 1 if d ≥ r

and vice versa.

• Threshold function z that converts a vector to binary vector: z (x) = 1 if
x ≥ 0 and vice versa.

Then, the memory writing (⊗+⊕) and reading (•) become

C := C + y (Axa)x>c (2.65)

x′c = z
(
C>y (Ax′a)

)
(2.66)

These expressions are closely related to attention mechanisms commonly used nowa-
days (Sec. 3.2.2).

In general, SDM overcomes limitations of correlation matrix memory such as Hop-
field network since the number of stored items in SDM is not limited by the number
of processing elements. Moreover, one can design SDM to store a sequence of pat-
terns. Readers are referred to Keeler (1988) for a detailed comparison between SDM
and Hopfield network (Keeler, 1988).

Memory-augmented neural networks and attention mechanisms

The current wave of deep learning has leveraged the concept of SDM to external
neural memory capable of supporting the working memory of RNNs (Weston et al.,
2014; Graves et al., 2014, 2016; Miller et al., 2016). These models enhance the SDM
with real-valued vectors and learnable parameters. For example, the matrices A and
C can be automatically generated by a learnable neural network. To make whole
architecture learnable, differentiable functions and flexible memory operations must
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be used. Attention mechanisms are the most common operations used in MANNs
to facilitate the similarity-based memory access of SDM. Through various ways of
employing attentions, RNNs can access the external memory in the same manner as
one accesses SDM. Details on neural distributed (slot-based) memory and attention
mechanisms will be provided in Chapter 3.

2.5 Relation to Computational Models

Automatons are abstract models of machines that perform computations on an input
by moving through a series of states (Sipser et al., 2006). Once the computation
reaches a finish state, it accepts and possibly produces the output of that input. In
terms of computational capacity, there are three major classes of automaton:

• Finite-state machine

• Pushdown automata

• Turing machine

Pushdown automata and Turing machine can be thought of as extensions of finite-
state machines (FSMs) when equipped with an external storage in the form of stack
and memory tape, respectively. With stored-program memory, an even more pow-
erful class of machines, which simulates any other Turing machines, can be built as
universal Turing machine (Turing, 1936). As some Turing machines are also uni-
versal, they are usually regarded as one of the most general and powerful automata
besides universal Turing machines.

One major objective of automata theory is to understand how machines compute
functions and measure computation power of models. For example, RNNs, if prop-
erly wired, are Turing-complete (Siegelmann and Sontag, 1995), which means they
can compute arbitrary sequences if they have unlimited memory. Nevertheless, in
practice, RNNs struggle to learn from the data to predict output correctly given
simple input sequence (Bengio et al., 1994). This poses a question on the effective
computation power of RNNs.

Another way to measure the capacity of RNNs is via simulations of operations that
they are capable of doing. The relationship between RNNs and FSMs has been
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discovered by many (Giles et al., 1992; Casey, 1996; Omlin and Giles, 1996; Tiňo
et al., 1998), which suggest that RNNs can mimic FSMs by training with data. The
states of an RNN must be grouped into partitions representing the states of the
generating automation. Following this line of thinking, we can come up with neural
architectures that can simulate pushdown automata, Turing machine and universal
Turing machine. Neural stack is an example which arms RNN with a stack as its
external memory (Mozer and Das, 1993; Joulin and Mikolov, 2015; Grefenstette
et al., 2015). By simulating push and pop operations, which are controlled by the
RNN, neural stack mimics the working mechanism of pushdown automata. Neural
Turing Machine and its extension Differentiable Neural Computer (Graves et al.,
2014, 2016) are prominent neural realisations of Turing machine. They use an RNN
controller to read from and write to an external memory in a manner resembling
Turing machine’s operations on its memory tape. Since the memory access is not
limited to the top element as in neural stack, these models have more computational
flexibility. Until recently, Le et al. (2020) extended the simulation to the level
of universal Turing machine by employing the stored-program principle (Turing,
1936; von Neumann, 1993). We save a thorough analysis on the correspondence
between these MANNs and Turing machines for Chapter 7. Here, we briefly draw
a correlation between models of recurrent neural networks and automata (see Fig.
2.7 ).

It should be noted that the illustration is found on the organisation of memory
in the models rather than the computational capacity. For example, some Turing
machines are equivalent to universal Turing machine in terms of capacity; RNNs are
on par with other MANNs because they are all Turing-complete. Having said that,
when neural networks are organised in a way that simulates powerful automata,
their effective capacity is often greater and thus, they tend to perform better in
complicated sequential learning tasks (Graves et al., 2014, 2016; Le et al., 2020). A
similar taxonomy with proof of inclusion relation amongst models can be found in
the literature (Ma and Principe, 2018).

2.6 Closing Remarks

We have briefly reviewed different kinds of memory organisations in the neural net-
work literature. In particular, we described basic neural networks such as Feed-
forward and Recurrent Neural Networks and their primary forms of memory con-
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Figure 2.7: Relation between external memory and computational models

structions, followed by a taxonomy on mathematical models of well-known external
memory designs based on memory operational mechanisms and relations to automa-
tion theory. In the next chapter, we narrow the scope of literature review to the main
content of this thesis: Memory-augment Neural Networks and their extensions.




