
Foreword

Variational Inference (VI) first starts as a handy tool in Bayesian inference to approximate
intractable posterior. Now, its usage goes beyond Bayesian inference, and we can see VI
everywhere in classic learning, and deep learning-anywhere needs an approximation. After this
lecture, we should:

Understand the fundamentals of VI (why “variational” here?)

See how models use VI (from Topic to Diffusion)

Use VI for your problem

Motivation

The fundamental problem in Bayesian statistics is finding a model  that fits observed data.
Given the model, we can even generate new data that looks like the observed one (hence,  is
also a generative model). Formally, given a dataset of  data points ,
we want to search for a model  parameterised by  s.t.  (also written as ) is
maximised. If the data is independent and identically distributed (i.i.d), the optimisation problem

reads . For computing convenience, we may want to maximise

the log-likelihood , leading to an equivalent problem:

In addition to the parameters, we need to know the form of the model (Gaussian distribution,
neural networks,...) to compute . The fitting problem is easy for a simple model like Gaussian,

where the optimal parameters to fit  are  where  and 

 (see Fig. 1 below as an example).
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Figure 1: Fitting 2d points with 2d Gaussian distribution. Image source: Wikipedia

Fitting challenges. Fitting is only easy for simple models (e.g. Gaussian, low dimensional)
while real data (images) are high dimensional, likely non Gaussian. Hence, to generate real
data, we need to seek for complicated . But how to make  complicated?

Latent Variable Models (LVM)

One way to make complicated distribution is to assume the existence of latent variables in the
generative model of the data. Let's start with one latent variable  . The generation procedure
for each data point  is then:

Someone (God) samples  from a prior  parameterized by 

Then he/she generates  from a conditional distribution model parameterized by 𝜃: 
 or .
The probabilistic graphical model for this single-latent model is given

in Fig. 2.

Figure 2: Propabilistic graphic model of a single-latent model

The distribution of the latent  is ok to be simple (e.g. some fixed Gaussian), but  can be high
dimensional, which make the marginal  complicated and hard to
compute.
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Problems in LVM

Fitting. As the marginal distribution  is complicated, the fitting problem (Eq. 1) also
becomes more challenging. For example, consider a simple LVM, mixture of univariate
Gaussians, which reads:

Sample  for 

For each data point :
Sample 

Sample 

also manifested by its PGM in Fig. 3.



Figure 3: Propabilistic graphic model of a mixture of Gaussian model.

The latent variable  indicates which cluster the data point  belongs to. In this case, the
marginal reads:

Although it is possible to find the closed-form for products of the conditional and integrals over 
, there are  ways to assign  points to any of  clusters, and thus,  terms

needed to compute. It is intractable as  and  increase. Therefore, for LVM, in general, it is
better not to directly optimize the likelihood through computing the marginal. Instead, we can

rewrite the log-likelihood as  and use
MCMC sampling to estimate the expectation. However, this straightforward solution is
undesirable due to:

1. Sampling from the uninformative prior  with initially random  mostly leads to 
, which makes learning with gradient extremely slow.
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2. Optimising  of expectation leads to biased MCMC approximation, which makes learning
with gradients cannot correctly converge.

These two issues can be fixed with the help of variational inference, as we will see later.

Inference. In LVM, another vital problem besides fitting is inference, where we want to infer the
latent variable given values of the observables, a.k.a, finding the posterior . The
knowledge of the latent will be helpful for:

Understand the data:

Which cluster do the data belong to?

Which topics does the document have?

Use in downstream tasks (Bayesian estimator, predictive distribution)

Solve the fitting problem!

Unfortunately, the inference is also intractable since in general , which involves

the intractable marginal in the denominator.

One good news is if we can estimate the posterior, we can reuse the result to fix the issue 1
mentioned above. By employing important sampling, we can sample from the posterior 
instead of the prior  to estimate the expectation of the conditional. Compared to the prior,
samples from the posterior is more informative to produce non-zero  and hasten the
learning of . Hence, the core problem of LVM is to estimate the posterior .

Exercises

1. Derive the optimal solution for the fitting problem using Gaussian distribution model.

2. Prove Eq. 3.

3. Compute the bias of  of expectation.

4. Rewrite the log-likelihood using important sampling
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