
Overview

The goal of VI is to estimate the posterior by computable approximation. To this end, there are
two approaches:

MCMC sampling: slow, hard to scale with big data

Variational inference: Construct a family of distributions over  and find the member of the
family that is closest to the posterior. This technique involves optimisation over functions;
and can be inexact (high bias, less variance). However, it brings benefits such as:

scalable, fast, suitable for big high dimensional data

generic and can be used for estimating any unknown function

Inference View

The objective of VI can be formally set as follows,

Note that we are looking a distribution that minimises the KL divergence between it and the true
posterior distribution. We can rewrite

Again the objective function involves the intractable . However, as we formulate the
posterior estimation problem as an optimization problem w.r.t , we can ignore  as this
term does not depend on  and does not affect the finding of the optimal . In short, minimizing

 is equivalent to maximizing

Here, all the terms  are generally computable, thus we have a good change
to efficiently solve this optimization problem. The objective function  is the evidence
lower bound because  (remember 

 is always non-negative).
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Notes on the .

 is referred to as variational distribution

Maximising  also implies maximising the log-likelihood 

Other name: variational lower bound, negative free energy

Reversing the KL in the original objective (Eq. 1) leads to a different and more challenging
optimisation

We need to solve the optimization in Eq. 1 for each , a.k.a finding  for each 

Fitting View

We can derive the  in a different way by starting from the goal of the fitting problem,
which is maximize the log-likelihood. Remember in Lecture 1, directly maximizing the log-
likelihood of LVM leads to bias. Hence, it is reasonable to find an alternative objective which is a
lower bound of the log-likelihood as follows,

The RHS is actually the . Here the inequality is provided by Jensen inequality 
 (see geometric illustration in Fig 1).
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Figure 1: Jensen inequality. Image source: Wikipedia.

Viewing the  this way, we can see it consists of 2 terms: the negative cross-entropy
of the join distribution relative to the variational distribution and the entropy of the variational
distribution. Maximising  is equivalent to minimising the cross-entropy of the join
(also maximising the log-likelihood of the join) while maximising the entropy of the variational
distribution. Now maximizing the log-likelihood is replaced by

Now the objective is no more biased when we use MCMC sampling to estimate the expectation,
which means we can safely optimize  using  sampled from .

Join optimisation. Two views of the  indicate two optimisation processes on the same
objective. If we optimise the  w.r.t , we are solving the inference problem and when we
optimise the  w.r.t , we are working on the fitting problem. In practice, we can do both at
the same time. Since the process is similar to the classic EM algorithm, people also refer to this
joint optimisation as variational EM.

Exercises

1. Prove  is non-negative using Jensen inequality
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2. Prove Eq. (10) is actually the 

3. Why is minimising the cross-entropy equivalent to maximising the log-likelihood

ELBO


