Classic VI often seeks close-formed updates of the parameters of the variational distribution q.
So, it requires a simple g. One common simplified assumption often used in classic VI is the
mean-field assumption.

Mean-field VI

Mean-field VI assumes q(z) can be factorized into a product of independent components, i.e. it
assumes independence amongst latent variables. Formally, we have g(z) = []q;(2;). For
J

example, in MoG, we can assume

K N
q(prxc, zev) = | [ p(ukl e, 537) ] | a(zil40)
k=1 1=1

where p and g are Gaussian and Multinomial distributions, respectively. This expression is
much simpler than the posterior p(z|z) shown in Lecture 1 so sampling from g will be possible.
However, this convenience comes with a cost. The naive and unrealistic assumption of
independence makes the posterior approximation using the variational distribution imperfect.
Take a 2d Gaussian as an example, the joint distribution cannot be approximated correctly by
the product of two 1D Gaussians as shown in Fig. 1.

Exact Posterior
Mean-field Approximation

Figure 1: Mean-fied approximation error (Blei et al.,2016)

Take MoG as another example; assigning a data point z; to a cluster k (i.e. interfering z;) will
depend on the location of the cluster (). They are not independent as assumed by mmean-
fieldVI. That said, the simple form of mean-field distributions is backed by the complexity of the
function that parameterises the distribution, especially in high-dimensional cases.
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Optimal Mean-field Variational Distribution

One good thing about the simplicity of the mean-field assumption is that we can find the local
optimal solution for the inference problem. Recall Lecture 2, we want to maximise the ELBO
and we rewrite the objective in this case as

ELBO(q) = Eq[log p(z, z)] — Eq[log g(2)] (1)
= log p(z) + Ey[log p(z|z)] Z E,, [log g;(2;)] (2)
j=1
We approach this optimisation problem using coordinate ascent, i.e. optimising ELBO w.r.t each

q(zj) one by one. Let's rewrite the ELBO as a function of some g by grouping all terms
containing gy, as follows,

Ly, = E,log p(zk|z—k, z) — E,, [log g (21)] + const (3)
= / qr(2x)Eq_, [log p(2x|21, )] — / qr(21) log g () + const (4)
2k 2

where the const term contains functions of variables not including g (zx ). As we want to find
qx (2 ), a function, to maximise Ly, a function of functions (functional), it is a functional
optimisation and requires calculus of variations to compute the derivatives %(2—) Also, the
maximiser qk(zk) must be a valid distribution, hence the functional optimisation reads

q;(zr) = argmax /Qk(zk)Eqk log p(zk|2—k,x)] — /Qk(zk)log a(zr)  (5)

gk
2k 2k

s.t/q}:(zk)dzk =1 (6)

To solve constrained optimisation, we use Lagrange multiplier and find the local optimum of the
following functional

I(q) = / 01 (24)Eq., [log P22, )] — / log gu(z1) + A( / a(z) — 1) (7)

Now we make use of Euler-Lagrange Equation from calculus of variations, which specifies the
condition of local optimum y(x) of I(y(z)) = [ F(z,y,y’) as follows,

d (OF OF
%(a—y)‘a—y—(’ )
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(Eq , logp(2x|2-, )] —

Translate to notations in Eq. (7), £ — zx, Yy — qx .F' — qk( k)
= 0. The condition in Eq. (8)

log i (2x) + A). Here, we do not have g (zx) in F' so 5

becomes
OF
= 9
0— 5 (9
& 0=E,  [logp(zk|z_k,z)] —loggr(zx) — 1+ A (10)

Hence, we have the optimal gj; (2x) = exp{E,_x[log p(2x|2_k, )]} x exp{—1 + A}. We
also need to find A by solving %\ =0at q,j(zk) which is equivalent to

/ gi(z) —1=0 (11)

2

o [exp(E,. logplanlz s )]} x exp{-1+ X} = 1 (12)
2k .
R S Ay Py o P 13)
Hence,

() — XP{Eq, [logp(zk|zk, z)|}
% (=) = Jexp{Eq—k[log p(zk|z—k, z)]} 14
x exp{E, , [log p(zr|2_k, )]} (15)
o exp{E, , [log p(z, z)|} (16)

As we can see, to infer q,’:(zk) we need to either compute the marginal of the log complete
conditional p(zx|z_g, x) or the joint p(z, x) distribution, which can be easy given the mean-
field assumption (will see later). The process of derivation requires calculus of variations, thus
comes the term "variational”. That said, we can simply derive the inference without calculus of
variations by rewriting Eq. (3) as



Ly = E,[logp(z,z)] — E, [log gx(zx)] + const (17)

= /Qk(zk:)Eqk log p(2, )] — /Qk:(zk:)log qr (1) + const (18)
exp{Eq , [logp(z, z)]}/ [exp{Eq ,[logp(2, )]}

- / ai(2) log T + const (19)

— KL (%(zk)H exp{Ey , [log p(z, z)]} \l + const (20)

Jexp{E, , [logp(z, )]} }

As KL is non-negative, L}, is maximised at gj (2x) =
exp{E, , [logp(z, z)]}/ [exp{E, ,[log p(z, z)]}, which is the same as that of using

2k
calculus of variations. Using the above solution, the coordinate ascent algorithm alternates

updating each ¢; with other q_;, fixed until the ELBO converges.

Exponential Family as Complete Conditional

To make the computation of the optimal ¢* manageable, we can further assume the distribution
form of the complete condition p(zk \z_k, :1:) as exponential family. This form is actually very
generic and can express a wide range of distributions. To be specific,

p(zklz—r, ) = h(zk) exp{m(z—k, ) " t(2k) — a(mi(z—k,z))} (21)
= q;(2x) = h(z1) exp{E, , [me(z_x,z) " t(21)] + const (22)
= gy (21) o< h(z1) exp{E,_, [m (21, 2) " t(21)] (23)

The optimal g* turns out to be in the exponential family as well and its natural parameter 7;, =
E, , [7k(2_k, z)]. Therefore, if we can define the parameters for the complete condition, we
can find the exponential form of g*.

Example: Mean-field Variational MoG

We conclude this lecture with a derivation of MoG's variational inference (check Lecture 1 if you
forget MoG). According to the mean-field assumption, we have the simplified variational
distribution for the latent variables:

K N

g 2n) = [ [ alenlive, 83) | | a(zile0) (24)

k=1 1=1
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where {fig, o1 H< 1, {#;} Y, are variational parameters needed to be found. Let's start with
computing the ELBO in this case as

ELBO(q) = E,[log p(z1.nv, t1:x, z1:n)] — Eq[log q(p1.x, 21:3))] (25)
= Eq[log p(z1.v|p1:x5 21:8)] + Eq[log p(p1.x)) + Eq[log p(21.x)]  (26)
- IEq [log Q(,ulK)] - Eq [lOg Q(le)] (27)
= Z Ey[log p(pe)] + Z Eqy[log p(2:)] + Z Eq[log p(xi|p:k, 2i))(28)
—ZE [log q(px,)] ZE [log q(z:)] (29)

Each term has a closed-form computation. For example, the cross-entropy ( [ ¢(z) log p(z)dz)
q

TRy
SHE) The cross-entropy between 2

between 2 Gaussians (terms 1) reads % log 2mo? + 257

Categorical (terms 2) reads Zle ¢i.k log (k). The cross-entropy between the variational
and the conditional is the most complicated, which reads:

E, [log p(: .5, )] / / Q(pi1:)a(z:) og p(as v, 70) (30)
,UfzK
1 ZK&:I [L2k ]. (zj—p )2
:Zcbi,k/ pe o log——e H (31)
k=1 )(\/27'('0'2) V2e

q(pix
The integral is computable and so the ELBO.

Now, the optimal variational distribution over z; is

q* (Z’L) X eXp{EQ—i [logp(lu’lzK’ Z1:N xl:N)]} (32)
x exp{log p(z;) + E,_, [log p(z;|p1.x, 2:)] + const} (33)
K
o exp{logp(z;) + By , [log | | p(:i|ux)**]} (34)
k=1
= ¢ (z; = k) x exp{log 7, + E,, [log p(x; | )]} (35)
q*(z = k) o exp{log m + =;E,,, (] — By, [15]/2} (36)
q* (2 = k) ox exp{log 1, + zifix — (B% + G7)/2} (37)
= ¢ir x exp{logmy + x;fix — (,&,2c + &,3)/2} (38)

Then we normalise over all K, resulting in



bip = exp{log 7 + z; i — (@5 +73)/2}
T exp{log Ty + @i, — (2 + 62)/2}

Then, comes the optimal variational distribution over i, is

q* (/J’k) X exp{Eq—k [].Og p(,u'lzKa Z1:N wl:N)]}
X exp{log p(/.Lk) + quk [IOg p(wlzN‘lu'lzK7 zl:N)] + COIlSt}

N K
o exp{log p(ur) + Y By, [log | [ p(as|pr) ™}
i=1 k=1
N
o exp{log p(ur) + Z E, , [zix log p(x;|pr)]} + const
i=1
N
o exp{log p(ur) + Y | By, [2ik]Eq,, [logp(w:|u)]}
i=1
N
o exp{log p(pu) + » _ dixlog p(wil )}
i=1

N
o exp{—pp /27 = Y dix(zi — )’ /20°}
=1

N N
X eXP{_1/2(Z bin/o” + Tk + Z ;P /0’ i, + const}
i=1 i=1

This expression is basically a Gaussian g* () ~ N (ux; fur, 03 ) with:

Zf\il T;Pi
(N, i/ + 72)02
1

fix =

~2
Uk: =
(XN, dip/o? + 72)0?

Exercises

1. Draw the graphical model of the jointp(z, a:) in MoG under mean-field assumption.

2. Prove that Eq. (15) and Eq. (16) are equivalent

3. Compute the integral in Eq. (31)

(39)

(43)

(44)

(45)

(46)

(47)

(48)

(49)



