
Topic models generally refer to unsupervised methods aiming to detect groups of words (topics)
that best characterise a document. In this lecture, we are interested in studying LDA. the most
representative topic model that uses VI in optimising the parameters.

Latent Dirichlet Allocation (LDA)

In LDA, we would like to model the generating process for each document  in a corpus of 
documents  as follows,

1. Choose the number of word in : 

2. Choose the probabilities of topics in :  . Note that 

3. For each word in :

Choose a topic . Note that 

Choose a word  - a multinomial distribution conditioned on the

topic. Hence, there are parameters  where  and  are the number of
topics and vocabulary in the corpus. Note that  and 

The graphical model of LDA looks like

 

Figure 1: LDA graphical model
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To gasp a sense of how complex this model is, we can derive the likelihood of one document
given parameters  and  (assuming constant ) as follows,

where  is the gamma function coming from Dirichlet distribution of  and  means the -th
word in  is the -th word in the vocabulary. Here, the complexity originates from the coupled
term  , which cannot be separated during computations including the integral. This reflects
a strong dependence between the latent variables in LDA. Another problem is the number of
coupled terms is , which is similar to that of MoG and thus, is not computable as  and 
increase. The likelihood of the whole corpus is even harder to compute, which reads:

Mean-field solution for LDA

We simplify the joint latent distribution by a mean-field variational distribution:

where  and  are Dirichlet and multinomial distributions, respectively. Obviously, 
 breaks the dependence between  and , yet it is not fully mean-field since it still models the

joint distribution  as a whole instead of individual distributions for each . That is a reasonable
choice since it reduces the approximation error while we can still find the optimal variational
distribution in this form (see below).

As usual, we start with deriving the  for a single document , which in this case is:
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Let's examine each term one by one. The first term focus on the generating distribution--a
conditional multinomial, which reads:

The second term is:

where  is the digamma function. The third term is just the cross-entropy between 2 Dirichlet
distributions:
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The fourth term is similar to the third term, yet this time it is just the entropy of a Dirichlet
distribution:

The fifth term is basically the entropy of Multinomials:

Note that all of the terms are easy to compute, and so the , Now, we need to find the
optimal .

Optimal variational multinomial

Remember we assume that , so we can directly use the mean-field solution in
Lecture 3:
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We can also redo the optimisation from scratch by writing the  as a function of 
and find the maximisers 

such that . Again we can use Lagrange multipliers to solve the constrained
optimisation, creating the following Lagrangian:

Solving this problem will lead to the same solution as Eq. (23).

Optimal variational Dirichlet

As  does not follow mean-field assumption, we need to directly maximise  w.r.t 
(note there is generally no constraint). Let's first write  as a function of :

Finding the root of this equation, despite its complexity, we can easily have a local optimal:
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The above formulations are derived for single document. To account for the whole corpus, we
need to estimate variational parameters for all documents as  and  using the

corresponding words in the documents .

Model's Parameter Estimation

After we find the update rule for variational parameters, we continue with the model's
parameters to complete the loop of variational EM. The process is quite similar to optimising the
variational parameters where we maximise the  w.r.t  and .

Optimal Conditional Multinomial

Let's rewrite the  for all documents as a function of  and form the Lagrangian

Setting it to zero leads to

The meaning turns out to be simple. To estimate the probability of vocab  belonging to topic ,
we count the number of -th vocab appears in the corpus weighted by the variational probability
of topic  assigned to the appeared word.

Optimal Dirichlet

Again, we rewrite the  for all documents as a function of :
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Unfortunately, unlike the case of variational Dirichlet, there is no easy local optimal (i.e. the root
of Eq. (34)). The equation involves other parameters  and thus can only be solved by iterative
methods. In practice, we can ignore optimising for  and treat them as hyperparameters
needed tuning.

Smoothed LDA

One problem with the current LDA is when a test document  contains a novel word  that are
not existing in the training corpus (it can be in the vocabulary set). In this case,  , 

 (just assuming that we can compute it using Eq. (3)) and thus, we cannot infer the
topics for this document . Even we approximate it with the variational distribution, we
cannot estimate  using Eq. (23) at .

One solution is to treat  as a random variable drawing from a prior Dirichlet distribution. For
simplicity, the prior is shared across  and modelled as an exchangeable Dirichlet with
single parameter ; hence, . The graphical model now becomes:
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Figure 2: Smoothed LDA graphical model

To efficiently optimise this LVM, we again formulate a mean-field variational distribution of the
latent variables, which in this case reads

where  is the new variational parameter. Introducing the prior on  modifies the  in Eq.
(6-7) with two additional terms  and . The modification does not
change the  and . Maximising the  w.r.t  yields:

To find the optimal update for , we also use the variational EM procedure. Unfortunately,
maximize the  w.r.t  requires iterative methods just as the case of , which does not
have a close-form solution.

Exercises

1. Draw the graphical model of the LDA under mean-field assumption.

2. Prove Eq. (35)

3. Prove Eq. (40)
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