Model-Based Episodic Memory Induces Dynamic Hybrid Controls
Hung Le, Thommen Karimpanal George, Majid Abdolshah, Truyen Tran, Svetla Venkatesh
thai.le@deakin.edu.au

Introduction
Episodic control [1] enables sample efficiency in reinforcement learning by recalling past experiences from an episodic memory. We propose a new model-based episodic memory of trajectories addressing current limitations of episodic control. Our memory estimates trajectory values, guiding the agent towards good policies (MBEC). Built upon the memory, we construct a complementary learning model via a dynamic hybrid control unifying model-based, episodic and habitual learning into a single architecture (MBEC+).

Trajectory model is \(Q = \sum_{t} r^t \) Trajectory, which is \(\mathcal{G}_t = \sum_{t} r^t \) where the written value: \(\mathcal{V}_t = \sum_{t=-1}^{t+1} y^t \) Trajectory, self memory: \(m = \sum_{t} r^t \tau^t \) where the estimated value of the query:

\[
\text{read}(\mathcal{T}, \mathcal{M}) = \sum_{t \in \mathcal{N}^\alpha(t)} (\mathcal{M}^{a_{t^{-1}}, \tau}(\mathcal{T}), \mathcal{M}^{a_{t+1}, \tau}) (a) \\
\max_{t \in \mathcal{N}^\alpha(t)} (\mathcal{M}^{a_{t-1}, \tau}(\mathcal{T})) (b)
\]

Memory operations
Given a key-value episodic memory, \(\mathcal{M} = \{ \mathcal{M}^{a, \tau}, \mathcal{M}^{\tau} \} \)
1. Memory read: given a query \(t \), randomly choosing either (a) average or (b) max value of query’s neighbors as the estimated value of the query:

\[
\text{read}(\mathcal{T}, \mathcal{M}) = \sum_{t \in \mathcal{N}^\alpha(t)} (\mathcal{M}^{a_{t^{-1}}, \tau}(\mathcal{T}), \mathcal{M}^{a_{t+1}, \tau}) (a) \\
\max_{t \in \mathcal{N}^\alpha(t)} (\mathcal{M}^{a_{t-1}, \tau}(\mathcal{T})) (b)
\]

2. Memory write: the values of the query \(t \)'s neighbors approach the written value with speeds relative to the distances:

\[
\forall i \in \mathcal{N}_\tau(\mathcal{T}): \mathcal{M}^{a_i, \tau} = \mathcal{M}^{a_{t^{-1}}, \tau} + \alpha (\mathcal{V}(\mathcal{T}) - \mathcal{M}^{a_{t^{-1}}, \tau})
\]

3. Memory refine: at any step, we perform memory read to estimate bootstrapped value \(Q' \) of next \(t' \), which is written to update the values of the current \(t' \)'s neighbors:

\[
Q' = \max_{a_i} r_{t'}(a_i) + \gamma \text{read}(\mathcal{T}, \mathcal{M}(t')) (a) \\
\mathcal{M} \leftarrow \text{write}(\mathcal{T}, Q') (b)
\]

Memory-based planning
Step 1: estimate episodic value of taking an action \(a \) from state \(s \):

\[
Q_{MBEC}(s, a) = r_s(a, s) + \gamma \text{read}(\mathcal{T}, \mathcal{M}(s')) (a) \\
\]

Step 2: combine episodic value with DQN's value through gating:

\[
Q(s, a) = Q_{MBEC}(s, a) f_{\alpha}(s, a) + Q(s, a)
\]

Step 3: train the networks via minimizing TD error:

\[
L_q = E \left(y^s(t) - \left[r^s(t+1) + \gamma \text{read}(\mathcal{T}, \mathcal{M}(s')) \right] \right)^2
\]

Dynamic hybrid control with the episodic memory at its core

Experimental results
2D Maze: (a) Noisy, (b) Trap and (c) Dynamic mode.

Stochastic Control
Atari games: Human normalized scores (mean/median) at 10 million frames for all and a subset of 25 games.

References

Introduction
Episodic control [1] enables sample efficiency in reinforcement learning by recalling past experiences from an episodic memory. We propose a new model-based episodic memory of trajectories addressing current limitations of episodic control. Our memory estimates trajectory values, guiding the agent towards good policies (MBEC). Built upon the memory, we construct a complementary learning model via a dynamic hybrid control unifying model-based, episodic and habitual learning into a single architecture (MBEC+).

Trajectory representation learning
- Trajectory model is LSTM. Hidden state \(\bar{t} \) is the representation
- Self-supervised learning: recall past events given a query as the preceding event (reconstruction loss)
- 2 trajectories having more common transitions are closer in the representation space
- Trajectory recall loss:

\[
L_{rec} = E \left(y^s(t) - \left[r^s(t+1) + \gamma \text{read}(\mathcal{T}, \mathcal{M}(s')) \right] \right)^2
\]

Memory-based planning
Step 1: estimate episodic value of taking an action \(a \) from state \(s \):

\[
Q_{MBEC}(s, a) = r_s(a, s) + \gamma \text{read}(\mathcal{T}, \mathcal{M}(s')) (a) \\
\]

Step 2: combine episodic value with DQN's value through gating:

\[
Q(s, a) = Q_{MBEC}(s, a) f_{\alpha}(s, a) + Q(s, a)
\]

Step 3: train the networks via minimizing TD error:

\[
L_q = E \left(y^s(t) - \left[r^s(t+1) + \gamma \text{read}(\mathcal{T}, \mathcal{M}(s')) \right] \right)^2
\]

Dynamic hybrid control with the episodic memory at its core

Experimental results
2D Maze: (a) Noisy, (b) Trap and (c) Dynamic mode.

Stochastic Control
Atari games: Human normalized scores (mean/median) at 10 million frames for all and a subset of 25 games.

References