Dual Memory Neural Computer for Asynchronous Two-view
Sequential Learning

Hung Le
Applied Al Institute,
Deakin University
Geelong, Australia
lethai@deakin.edu.au

ABSTRACT

One of the core tasks in multi-view learning is to capture rela-
tions among views. For sequential data, the relations not only span
across views, but also extend throughout the view length to form
long-term intra-view and inter-view interactions. In this paper, we
present a new memory augmented neural network that aims to
model these complex interactions between two asynchronous se-
quential views. Our model uses two encoders for reading from and
writing to two external memories for encoding input views. The
intra-view interactions and the long-term dependencies are cap-
tured by the use of memories during this encoding process. There
are two modes of memory accessing in our system: late-fusion and
early-fusion, corresponding to late and early inter-view interac-
tions. In the late-fusion mode, the two memories are separated,
containing only view-specific contents. In the early-fusion mode,
the two memories share the same addressing space, allowing cross-
memory accessing. In both cases, the knowledge from the memories
will be combined by a decoder to make predictions over the output
space. The resulting dual memory neural computer is demonstrated
on a comprehensive set of experiments, including a synthetic task
of summing two sequences and the tasks of drug prescription and
disease progression in healthcare. The results demonstrate com-
petitive performance over both traditional algorithms and deep
learning methods designed for multi-view problems.

KEYWORDS

Memory Augmented Neural Networks; Multi-view Sequential Learn-
ing; Healthcare

ACM Reference Format:

Hung Le, Truyen Tran, and Svetha Venkatesh. 2018. Dual Memory Neural
Computer for Asynchronous Two-view Sequential Learning. In KDD ’18:
The 24th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, August 19-23, 2018, London, United Kingdom. ACM, New York,
NY, USA, 9 pages. https://doi.org/10.1145/3219819.3219981

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

KDD 18, August 19-23, 2018, London, United Kingdom

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5552-0/18/08... $15.00
https://doi.org/10.1145/3219819.3219981

Truyen Tran
Applied Al Institute,
Deakin University
Geelong, Australia
truyen.tran@deakin.edu.au

Svetha Venkatesh
Applied Al Institute,
Deakin University
Geelong, Australia
svetha.venkatesh@deakin.edu.au

1 INTRODUCTION

In multi-view learning, data can be naturally partitioned into chan-
nels presenting different views of the same data. For examples,
multilingual documents have one view for each language, and im-
ages of a 3D object are taken from different viewpoints. Multi-view
sequential learning is a sub-class of multi-view learning where each
view data is in the form of sequential events, which can be synchro-
nous or asynchronous. In the synchronous setting, all views share
the same time step and view length. Some problems of this type
include video consisting of visual and audio streams; and text as
a joint sequence of words and part-of-speech tags. Synchronous
multi-view sequential learning is an active area [20, 26, 27]. These
works make assumptions on the time step alignment and thus they
are constrained by the scope of synchronous multi-view problems.

In this work, we relax these assumptions and focus more on
asynchronous settings, that is, there is no alignment among views
and the sequence lengths vary across views. These occur when the
data is collected from channels having different time scales or we
cannot infer the precise time information when extracting data. In
healthcare, for instance, an electronic medical record (EMR) con-
tains information on patient’s admissions, each of which consists of
various views such as diagnosis, medical procedure, and medicine.
Although an admission is time-stamped, medical events from each
view inside the admission are not synchronous and different in
length.

Asynchronous multi-view data often demonstrates three types
of view interactions. The first type is intra-view interactions, those
involving only one view, representing the internal dynamics. For
examples, each EMR view has specific rules for coding its events,
forming distinctive correlations among medical events inside a
particular view. The second type is late inter-view interactions,
those that span from input views to output, representing the map-
ping function between the inputs and the outputs. We call it “late”
because the interaction across input views is considered only in
the inference process. The third type is early inter-view interac-
tions, those that account for relations covering multiple input views
and happening before the inference process. For example, in drug
prescription, the diagnosis view is the cause of the medical proce-
dure view, both of which affect the output which are medicines
prescribed for patient. The interactions in sequential views not
only span across views but also extend throughout the length of
the sequences. One example involves patients whose diseases in
current admission are related to other diseases or treatments from
distant admissions in the past. The complexity of view interac-
tions, together with the unalignment and long-term dependencies

https://doi.org/10.1145/3219819.3219981
https://doi.org/10.1145/3219819.3219981

among views poses a great challenge in asynchronous multi-view
sequential problems.

We propose a novel memory augmented neural network model
(MANN) solving the problem of asynchronous interactions and
long-term dependencies at the same time. Our model makes use of
three neural controllers and two external memories constituting a
dual memory neural computer. In our architecture, each input view
is assigned to a controller and a memory to model the intra-view
interactions in that particular view. At each time step, the controller
reads an input event, updates the memory, and generates an output
based on its current hidden state and read vectors from the memory.
Corresponding to the two types of inter-view interactions, there
are two modes in our architecture: late-fusion and early-fusion
memories. In the late-fusion mode, the memory space for each
view is separated and independent, that is, there is no information
exchange between the two memories during the encoding process.
The memories’ read values are only synthesized to generate inter-
view knowledge in the decoding phase. Contrast to the late-fusion
mode, the memory addressing space in the early-fusion mode is
shared among views. That is, the encoder from one view can access
and modify the contents of the other view’s memory. This design
ensures the information is shared across views via memories ac-
cessing. In order to facilitate this asynchronous sharing, we design
novel cache components that temporarily hold the write values
of every time steps. This enables related information at different
time steps to be written to the memories together. Finally, we apply
memory write-protected mechanism in the decoding process to
make the inference of our model more efficient.

In summary, our main contributions are: (i) proposing a novel
dual memory neural computer (DMNC) to solve the asynchronous
multi-view sequential problem, (ii) designing our architecture to
model view interactions and long-term dependencies, (iii) demon-
strating the efficacy of our proposed model on real-world medical
data sets for the problems of drug prescription and disease progres-
sion. The significance of DMNC lies in its versatility as our model
presents a generic approach that uses external memories to model
multi-view problems.

2 BACKGROUND
2.1 Related Works

Multi-view learning is a well-studied problem, where methods often
exploit either the consensus or the complementary principle [25].
A straightforward approach is to concatenate all multiple views
into one single view making it suitable for conventional machine
learning algorithms, both for vector inputs [6, 28] or sequential
inputs [12, 23]. Another approach is co-training [2, 14], aiming to
maximize the mutual agreement on views. Other approaches either
establish a latent subspace shared by multiple views [19] or perform
multiple kernel learning [21]. These works are typically limited to
non-sequential views.

More recently, deep learning is increasingly applied for multi-
view problems, especially with sequential data. For examples, LSTM
[9] is extended for multi-view problems in [20] or multiple kernel
learning is combined with convolution networks in [16]. More re-
cent methods focus on building deep networks to extract features
from each view before applying different late-fusion techniques

such as tensor products [27], contextual LSTM [17] and gated mem-
ory [26]. All of these deep learning methods are designed only for
synchronous sequential input views. Hence, the applications of
these methods mostly fall into tagging problems where the output
is aligned with the input views. As far as we know, the only work
that can apply to asynchronous inputs is [5], in which the authors
construct a dual LSTM for feature extraction and use attention for
late-fusion.

In healthcare, there are only few works that make use of multi-
view data. A multi-view multi-task model is proposed in [13] to pre-
dict future chronic diseases given multi-media and multi-model ob-
servations. However, this model is only designed for single-instance
regression problems. DeepCare [15] solves the disease progression
problem by combining diagnosis and intervention views. It treats
medical events in each admission as a bag and use poolings to com-
pute the feature vectors for the two views in an admission. The
sequential property of events inside each admission is ignored and
there is no mechanism to model inter-view interactions at event
level. There are many other works using deep learning such as RE-
TAIN [4], Dipole [11] and LEAP [29] that attack different problems
in healthcare. However, they are designed for single input view.

Memory augmented neural network (MANN) is a recent promis-
ing research topic in deep learning. Memory Networks (MemNN)
[24] and Neural Turing Machines (NTMs) [7] are the two classes
of MANN s which have been applied to many problems including
healthcare [18]. However, designing a MANN for multi-view learn-
ing is still new and our work is one of the first attempts to build
a generic MANN capable of modeling interactions among events
from different data views. The memories used in our model are
based on the powerful DNC [8], the latest improvement over the
NTM. Since DNC is the building block in our model, we briefly
present it in the next subsection.

2.2 DNC Overview

A DNC consists of a controller, which accesses and modifies an
external memory module using a number of read and write heads.
Given some input x;, and a set of R previous read values from
rtl_l, r?_l, e rf_l], the controller produces a key
k: € RP, where D is the word size in memory. This key will be used
to compute content-based read-weight and write-weight vector for
a memory matrix M; € RNXD \where N is the number of memory
locations. In addition to content-based addressing, DNC supports
dynamic memory allocation and temporal memory linkage for
computing the final write-weight w;” and read-weights wj k The
memory is updated by following rule:

memory ry—1 = [

My =Miqo(E—g/wlel) +glwiv/] (1)
where E is an N X D matrix of ones , g}“’ is a scalar write gate,
w/ € [0, 11V is the final write-weight, e; € [0, 1]P is an erase
vector,v; € RP is a write vector, o is point-wise multiplication. The
k-th read value rf is retrieved using:

rk =MWk 1<k<R ©)

3 METHODS

3.1 Asynchronous Two-View Sequential
Learning: Problem Formulation

Let us start with a generic formulation of the asynchronous two-
view sequential learning problem. Let S, $% denote the two input
view spaces and S denotes the output view space. Each sample of the
two-view problem (Xi1 Xz, Y) consist of two input views: Xh =

{xil, xg, ...,xilii},Xi2 = {xiz, ,xg ...,xzziz} and one output
view Y = {y1, yz, ..., yr }. Each view has a particular length (L1,
L% or L) and can be treated as a set/sequence of events that belongs
to different spaces (x;} € Sh, xg € S, y; € S). Each event then

can be represented by an one-hot vector v € [0, 1] ICIl where C
can be St, S or § . It should be noted that this formulation can be
applied to many situations including video-audio understanding,
image-captioning and other two-channel time-series signals. Here
we focus effort on solving the two-view problems in healthcare.

For our healthcare problems, we restrict the scope to model-
ing Electronic Medical Record (EMR), which typically contains the
history of hospital encounters, including diagnoses and interven-
tions such as procedures and drugs. In drug prescription, doctors
prescribe drugs after considering diagnoses and procedures admin-
istered to patients. In modeling disease progression, doctor may
refer to patient’s history of admissions to help diagnoses the cur-
rent diseases or to predict the future disease occurrences of the
patient. There are clinical recording rules applying to EMR codes
such that diagnoses are “ordered by priority” or procedures follow
the order that “the procedures were performed”!. Besides, although
medical codes from different views are highly correlated, they are
not aligned. For instances, some diagnoses may correspond to one
procedure or one diagnosis may result in multiple medicines. Hence,
these problems can be treated as asynchronous two-view sequential
learning.

In the drug prescription context, S’ and S? represent the di-
agnosis and procedure spaces, respectively and S corresponds to
the medicine space. The drug prescription objective is to select
an optimal subset of medications from S based on diagnosis and
procedure codes. Similarly, we can formulate the disease progres-
sion problem as two input sequences (diagnoses and interventions)
and one output set (next diagnoses). Although our architecture can
model sequential output, the choice of representing output as set
is to follow a common practice in healthcare where the order of
medical suggestions is specified. Because a patient may have multi-
ple admission records for different hospital visits, a patient record
can be represented as {(Xél,X(if, Ya)}: v where A is the num-

ber of admissions this patient commits. In order to predict Y,, we

. . . ; a-1

may need to exploit not only (Xé1 ¢) but also { (X ;)1(1’ X Il,za) } X
pa=

More details on how our work makes use of previous admissions

and handles long-term dependencies will be given in Section 3.4.

!https://mimic.physionet.org/mimictables/

LSTM!

(Encoder)

LSTM¢

(Decoder)

(Encoder)

Figure 1: Dual Memory Neural Computer. LSTM®, LSTM?
are the two encoding controllers implemented as LSTMs.
LSTM? is the decoding controller. The dash arrows represent
cross-memory accessing in early-fusion mode.

3.2 Dual Memory Neural Computer

We now present our main contribution to solve the generic asyn-
chronous two-view sequential learning — a new deep memory aug-
mented neural network called Dual Memory Neural Computer
(DMNC) (see Fig. 1). Our architecture consists of three neural con-
trollers (two for encoding and one for decoding), each of which
interacts with two external memory modules. Each of the two mem-
ory modules is similar to the external memory module in DNC [8],
that is, it is equipped with temporal linkage and dynamic alloca-
tion. The three controllers have their own embedding matrices
Wél, Wéz, WEg which project the one-hot representation of events
to a unified d-dimensional space. We use xg, XZ, yi € R? to de-
note the embedding vector of xg, xiﬁ, Yy, respectively, in which
XZ = Wélxg,xg = Wézxg,yt = Wgy;. The embedding vectors
xg x’é are always used as inputs of the encoders while the em-

bedding vector y; will only be used as input of the decoder if the
output view is a sequence.

Each encoder will transform the embedding vectors to h-dimensional

hidden vectors. The current hidden vectors and outputs of the en-
coders are computed as:
ip i _ i iy i i1
Bl oft = LSTM ([xt1 , rtl_l] Jh

Joasn<it @

noft = LSt ([xi i | he) 1< <t @

where r;:_l, rZ_l
encoder and L%, L are the lengths of input views. It should be
noted that the time step in each view may be asynchronous and the
lengths may be different. In our applications, since we treat input

views as sequences, we use LSTM as the core of the encoders?.

are read vectors at previous time step of each

For inputs as sets, we can replace the LST Ms with MLPs

https://mimic.physionet.org/mimictables/

Using separated encoder for each view naturally encourages the
intra-view interactions. To model inter-view interactions, we use
two modes of memories, late-fusion and early-fusion.

Late-fusion memories: In this mode, our architecture only
models late inter-view interactions. In particular, r;: and rZ are
computed separately:

i i1 iR e i1
rl=|r sl =m o', M 5
ty [[T 51] read(ty’ 1) ®)

ip _ | d21 2 R| _ e
Ty = [rtz seenn Ty,] =m_

(o2 72) ©
where Mj, M are the two memory matrices containing view-
specific contents and mflea & mfia 4 are two read functions of the
encoders with separated set of parameters. Given the encoder out-
put vectors, the read functions produce the keys k;i kg in the
manner of DNC. The keys are used to address the corresponding
memory and compute the read vectors using Eq.(2). This design
ensures the dynamics of computation in one view does not affect
the other’s and only in-view contents are stored in view-specific
memory. This mode is important because in certain situations, writ-
ing external contents to view-specific memory will interfere the
acquired knowledge and obstruct the learning process. In Section
4.1, we will show a case study that fits with this setting and the
empirical results will demonstrate that the late-fusion mode is nec-
essary to achieve better performance.

Early-fusion memories: When there exists a strong correla-
tion between the two input views, requiring to model early inter-
view interactions, we introduce another mode of memories: early-
fusion mode. In this mode, the two memories share the same ad-
dressing space, that is, the encoder from one view can access the
memory content from another view and vice versa. Also, the read
functions mim 4 share the same parameter set:

iy _ [011 iLR| _ e i
rtll - [rh ""’rt1] =Mead (Otll’[Ml’MZ]) (7)

it = [r;jl - r;jR] =m0 (012, (M1, M) ®)

Since the read vectors for one encoder can come from either
memories, the encoder’s next hidden values are dependent on both
views’ memory contents, which enables possible early inter-view
interactions in this mode.

Memories modification with cache components: In both
modes, the two memories are updated every time step by the two
encoders. While in the late-fusion mode, the writings to two mem-
ories are independent and can be executed in parallel using Eq.(1),
in the early-fusion mode, the writings must be executed in an alter-
nating manner. In particular, the two encoders take turn writing
to memories, allowing the exchange of information at every time
step. Doing this way is optimal if the two views are synchronous
and equal in lengths. To make it work with variable length input
views, we introduce a new component to our architecture: a cache
memory that lies between the controller and the external memory.
Different from the original DNC which writes directly the event’s
value to the external memory, in the early-fusion mode of our archi-
tecture, each controller integrates write values inside its own cache
memory c; until an appropriate moment before committing them
to the external memory. We introduce g{ as a learnable cache gate

Algorithm 1 Training algorithm for healthcare data (set output)

Require: Training set {{(Xfll,X‘if, Y, }:;‘:l}n]\]:1
1: Sample B samples from training set
2: for each sample in B do

3: Clear memory My, My
4 fora=1,Ado))
5 (X, X2,Y) = (X2, X2, Y,)
6: while t; < Lt or tp < L2 do
7 if t; < Lt then o
8 Use Eq.(3) to calculate hli , 0?1
9 Use Eq.(1) or Eq.(11) to update M
10: Use Eq.(5) or Eq.(7) to read M;
11: h=t1 +1
12: end if
13: if t; < L2 then o
14: Use Eq.(4) to calculate hZ , OZ
15: Use Eq.(1) or Eq.(11) to update M,
16: Use Eq.(6) or Eq.(8) to read My
17: to =ty +1
18: end if
19: end while
20: Use Eq.(12) and Eq.(13) to read M1,M3
21: Use Eq.(16) to calculate i
22: Update parameter 0 using VgLossser (Y,)
23: end for
24: end for

to control the degree of integration between current write value
and the previous cache’s content as follows:

g = f(of) ©)

gfoci—1+ (1—gf)ov; (10)

Ct

In these equations, g is the cache gate, oi is the encoder output,
f€ is a learnable function3, ¢; is the cache content and v; is the
write value. Then, the cache will be written to the memory using
the following formula:

My = M-y 0 (E-gywy'el) +g/w)'c) (11)
We propose this new writing mechanism for early-fusion mode
to enable one encoder to wait for another while processing input
events (in this context, waiting means the encoder stops writing
to memory). In the original DNC, if the write gate g}” is close to
zero, the encoder does not write to memory and the write value at
current time step will be lost. However, in our design, even when
there is no writing, the write value somehow can be kept in the
cache if gf < 1. The cache in a view may choose to hold an event’s
write value instead of writing it immediately at the read time step.
Thus, the information of the event is compressed in the cache until
appropriate occasion, which may be after the appearance of another
event from the other view. This mechanism enables two related
asynchronous events to simultaneously involve in building up the
memories.

3In this paper, all f functions are implemented as single-layer feed-forward neural
networks

Write-protected memories: In our architecture, during the
inference process, the decoder stops writing to memories. We add
this feature to our design because the decoder does not receive
any new input when producing output. Writing to memories in
this phase may deteriorate the memory contents, hampering the
efficiency of the model.

3.3 Inference in DMNC

In this section, we give more details on the operation of the de-
coder. Because the decoder works differently for different output
types (set or sequence), we will present two versions of decoder
implementation.

Output as sequence: In this setting, the decoder ingests the
encoders’ final states as its initial hidden state hy = [h}jil , hleiz] .
The decoder’s hidden and output vectors are given as: h;, [o%, o?] =
LSTM4 ([y;—l’ ril_l, riz_l] ,ht_l). Here, y;_, is the embedding of
the previous prediction y;_;. The decoder combines the read vectors
from both memories to produce a probability distribution over the
output:

ril = [r?'l, ...,r;I’R] = mfead (0%,M1) (12)
riz = [rti“, ...,rtiZ’R] = m‘riead (O%,Mz) (13)
P(yelx® X%2) = x ([ohof] + £ ([rfr]))

where rti1 , riz are read vector from Mj, My, respectively, provided by
d

r

the read function m ecad’ f d is a learnable function and 7 is softmax

function. Then, the current predictionis y} = argmax P (y; = y|Xh ,Xiz)

yeSs
and the loss function is the cross entropy:
L . .
Lossseq (Y.P) =~ > logP (yt |X“,X’2) (15)
t=1

d

re
from the memories once to get the read vectors r't, r'2. The decoder

combines these vectors with the encoders’ final hidden values to
produce the output vector § € RIS

Output as set: In this setting, the decoder uses m?_, to read

g=o(rlmrt +wors e ws [0 65 D) a9)

Here, the combination is simply the linear weighted summation
with parameter matrices Wy, Wy, Wa. f d is a learnable function
and o is the sigmoid function. For set output, the loss function is
multi-label loss defined as:

Lossser (Y.§) = —| >, logGi+) log(1-p)| (17)

y1€Y y1gY

For both settings, the decoder makes use of both memories’ contents
and encoders’ final hidden values to produce the output. While
memory contents represent the long-term knowledge, the encoder’s
hidden values represent the short-term information stored inside
the controllers. Both are crucial to model inter-view interactions
and necessary for the decoder to predict the correct outputs.

3.4 Persistent Memory for Multiple
Admissions

As mentioned earlier in Section 3.1, one unique property of health-
care is the long-term dependencies among admissions. Therefore,
the output at the current admission Y, is dependent on the current

pa>

several ways to model this property. The simplest solution is to
concatenate the current admission with previous ones to make
up single sequence input for the model. This method causes data
replication and preprocessing overhead. Another solution is to use
recurrent neural network to model the dependencies. As in [3, 15],
the authors use GRU and LSTM where each time step is fed with
an admission. The admission is treated as a set of medical events
and represented by a feature vector.

In our memory-augmented architecture, we can model this de-
pendencies by using the memories to store information from previ-
ous admissions. In the original DNC, the memory content is flushed
every time new data sample (i.e. new admission) is fed — this cer-
tainly loses the information of admission history. We modify this
mechanism by keeping the memories persistent during a patient’s
admissions processing. That is, the content of memories is built up
and modified during the whole history of a patient’s admissions.
The memories are only cleared prior to reading a new patient’s
record.

Persistent memories in our architecture play two important roles.
First, because the number of events across admissions are large
while memory sizes are moderate, the memory modules learn to
compress efficiently the input views, keeping only essential infor-
mation. This makes memory look-ups in the decoding process only
limited to a fixed size of chosen knowledge. This is more compact
and focused than attention mechanisms, in which the decoder has
to attend to all events in the input. Second, each memory slot can
store information of any event in the input views, which enables
skip-connection reference in the decoding process, i.e., the decoder
can jump to any input event, even the one in the farthest admission,
to look for relevant information. The whole process of training our
dual memory neural computer for healthcare data is summarized
in Algorithm 1.

. . a
and all previous admission’s inputs {(X X ;,la)} v There are
pa=

4 RESULTS

In this section, we demonstrate the effectiveness of our proposed
model DMNC on synthetic and real-world tasks. We use DMNC;
and DMNC, to denote the late-fusion and early-fusion mode of our
model, respectively. The data for real-world problems are real EMR
data sets, some are public accessible. We make the source code of
DMNC publicly available at https://github.com/thaihungle/DMNC.

4.1 Synthetic Task: Sum of Two Sequences

We conduct this synthetic experiment to verify our model perfor-
mance and behavior. In this problem, the input views are two ran-
domly generated sequence of numbers: {xll, e xi} {x%, s x%}
Each sequence has L integer numbers. L is randomly chosen from
range [1, Lyqx] and the numbers are randomly chosen from range
[1,50]. The output view is also a sequence of integer numbers de-

L . .
fined as {yi = xl.1 + x%+1—i}i:1’ in which y; € [2,100]. Note that

https://github.com/thaihungle/DMNC

—— DMNC (ecarly-fusion)
~ == DMNC (late-fusion)
----- DNC

—-= Dual-LSTM

—A— LSTM
—+— WLAS

Cross Entropy

T T T T
0 2000 4000 6000 8000
Step

Figure 2: Training loss of sum of two sequences task.

Table 1: Sum of two sequences task test results. Max train
sequence length is 10.

Accuracy (%)

Model 0 Toar =15 Lymax = 20
LSTM 35.17 24.12 18.64
DNC 37.8 20.43 14.67
Dual LSTM 52.41 42.57 30.47
WLAS 55.98 43.29 32.49
DMNC, 99.76 98.53 78.17
DMNC, 98.84 93.00 69.93

Table 2: MIMIC-III data statistics.

of admissions | 42,586 | # of diag | 6,461
of patients 34,594 | # of proc | 1,881
Avg. view len 53.86 | #ofdrug | 300

this summation form is unknown to the model. During training,
only the outputs are given. Because the output’s number is the sum
of two numbers from the two input views, we name the task as sum
of two sequences. It should be noted that two input numbers in the
summation do not share the same time step; hence, the problem is
asynchronous. To learn and solve the task, a model has to read all
the numbers from the two input sequences and discover the cor-
rect pair that will be used to produce the summation. Synchronous
multi-view models certainly fail this task because they assume the
inputs to be aligned. In the training phase, we choose Lyqx = 10,
training for 10,000 iterations with mini batch size = 50. In the test-
ing phase, we evaluate on 2500 random samples with Lp,4x = 10,
Lmax = 15, Limax = 20 to verify the generalization of the models
beyond the range where they are trained.

Evaluations: the baselines for this synthetic task are chosen as
follows:

0.64

Accuracy

= DMNC (early-fusion)
DMNC (late-fusion)

..... DNC

—+= Dual-LSTM

—&— LSTM

—#— WLAS

0.0
0 2000 1000 6000 8000

Step

Figure 3: Training accuracy of sum of two sequences task.

e View-concatenated sequential models: This concatenates
events in input views to form one long sequence. This tech-
nique transforms the two-view sequential problem to normal
sequence-to-sequence problem. We pick LSTM and DNC as
two representative methods for this approach.

e Attention model WLAS [5]: This has a LSTM encoder per
view, and attention is used for decoding, similar to that in
machine translation [1]. The model is applied successfully in
the problem of video sentiment analysis. To make it suitable
for our tasks, we replace the encoders’ feature-extraction lay-
ers in the original WLAS by an embedding layer. We choose
this model as baseline since its architecture is somehow sim-
ilar to ours. The difference is that we make use of external
memories instead of attention mechanism.

e Dual LSTM: This model is the WLAS model without atten-
tion, that is, only the final states of encoders are passed into
the decoder.

Implementations: For all models, embedding and hidden di-
mensions are 64 and 128, respectively. Word size for memory-based
methods are 64. Memory size for the view-concatenated DNC and
DMNC are 32 and 16, respectively. We double the memory size for
view-concatenated DNC to account for the fact that the length of
the input sequence is nearly double due to view concatenation. We
use Adam optimizer with default parameters and apply gradient
clipping size = 10 to train all models. Since output is a sequence, we
use the cross-entropy loss function in Eq.(15). The evaluation metric
used in this task is accuracy - the number of correct predictions
over the length of output sequence.

Results: The training loss and accuracy curves of the models are
plotted in Figs. 2 and 3. The test average accuracy is summarized in
Table 1. As clearly shown, overall the proposed model outperforms
other methods by a huge margin of about 45%. Although dual LSTM
and WLAS perform better than view-concatenated methods, it’s
too hard for non-memory methods to “remember” correctly pairs of
inputs for later output summation. View-concatenated DNC even
with double memory size still fails to learn the sum rule because
storing two views’ data in a single memory seems to mess up

Table 3: Mimic-III drug prescription test results.

Model [AUC F1 P@1 P@2 P@5 |
Diagnosis Only
Binary Relevance | 82.6 69.1 799 77.1 703
Classifier Chains | 66.8 63.8 683 66.8 61.1
LSTM 849 709 908 867 791
DNC 854 714 900 86.7 79.8
Procedure Only
Binary Relevance | 81.8 694 82.6 80.1 73.6
Classifier Chains | 634 617 837 803 71.9
LSTM 83.9 708 881 86.0 78.4
DNC 832 704 884 858 787
Diagnosis and procedure
Binary Relevance | 84.1 70.3 81.0 782 723
Classifier Chains | 64.6 63.0 84.6 815 74.2

LSTM 858 721 916 86.8 805
DNC 86.4 724 909 874 80.6
Dual LSTM 84 714 906 87.1 80.5
WLAS 86.6 725 919 881 80.9
DMNC, 874 732 924 839 82.6
DMNC, 87.6 734 921 89.9 825

the information, making this model perform worst. Between two
versions of DMNC, late-fusion mode is better perhaps due to the
independence between two inputs’ number sequences. This is the
occasion where trying to model early cross-interactions damages
the performance. The slight drop in performance when testing with
Lmax = 15 shows that our model really learns the sum rule. When
Lmax = 20, the input length is longer than the memory size, so
even when DMNCs can learn the sum rule, they cannot store all
input pairs for later summation. However, our methods still manage
to perform better than any other baseline.

4.2 Drug Prescription Task

The data set used for this task is MIMIC-III, which is a publicly
available dataset consisting of more than 52k EMR admissions from
more than 46k patients. In this task, we keep all the diagnosis
and procedure codes and only preprocess the drug code since the
raw drug view’s average length can reach hundreds of codes in an
admission, which is too long given the amount of data. Therefore,
only top 300 frequently used of total 4781 drug types are kept
(covering more than 70% of the raw data). The final statistics of the
preprocessed data is summarized in Table 2.

Evaluations: We compare our model with the following base-
lines:

e Bag of words and traditional classifiers: In this approach,
each input view is considered as a set of events. The vector
represents the view is the sum of one-hot vectors represent-
ing the events. These view vectors are then concatenated
and passed into traditional classifiers: SVM, Logistic Regres-
sion, Random Forest. To help traditional methods handle
multi-label output, we apply two popular techniques: Binary

Relevance [10] and Classifier Chains [22]. We will only re-
port the best model for each of the two techniques, which
are Logistic Regression and Random Forest, respectively.

e View-concatenated sequential models (LSTM, DNC), Dual
LSTM and WLAS [5]: similar to those described in the syn-
thetic task.

e Single-view models: To see the performance gains when
making use of two input views, we also report results when
only using one view for Binary Relevance, Classifier Chains,
LSTM and DNC.

Implementations: We randomly divide the dataset into the train-
ing, validation and testing set in a 2/3 : 1/6 : 1/6 ratio. For tra-
ditional methods, we use grid-searching over typical ranges of
hyper-parameters to search for best hyper-parameter values. Deep
learning models’ best embedding and hidden dimensions are 64
and 64, respectively. Optimal word and memory size for DMNC
are 64 and 16, respectively. The view-concatenated DNC shares the
same setting except the memory size is doubled to 32 memory slots.
Since the output in this task is a set, we use the multi-label loss
function in Eq.(17) for deep learning methods. We measure the rel-
ative quality of model performances by using common multi-label
metrics, Area Under the ROC Curve (AUC) and F1 scores, both of
which are macro-averaged. Similar results can be achieved when
using micro-averaged so we did not report them here. In practice,
precision at k (P@k) are often used to judge the treatment recom-
mendation quality. Therefore, we also include them (k = 1,2, 5) in
the evaluation metrics.

Results: Table 3 shows the performance of experimental models
on aforementioned performance metrics. We can see the benefit
of using two input views instead of one, which helps improve the
model performances. Traditional methods clearly underperform
deep learning methods perhaps because these methods are hard
to scale when there are many output labels and the inputs in our
problem are not bag-of-words. Among deep learning models, our
proposed ones consistently outperform others in all type of mea-
surements. Our methods demonstrate 1-2% improvements over the
second runner-up baseline WLAS. The late-fusion mode seems
suitable for certain type of metrics, but overall, the early-fusion
mode is the winner, highlighting the importance of modeling early
inter-view interactions.

Case study: In Table 4, we show an example of drugs prescribed
for a patient given his current diagnoses and procedures. The pa-
tient had serious problems with his bowel as described in the first
four diagnoses. The next three diagnoses are also severe relating to
his heart problems while the remaining diagnoses are less urgent. It
seems that heart-related diagnoses later led to heart surgeries listed
in the procedure codes. Both modes of DMNC predict correctly
the drug Docusate Sodium used to cure urgent bowel symptoms.
Relating to heart diseases and surgeries, our models predict closely
to expert’s choices. Potassium Chloride is necessary for a healthy
heart. Acetaminophen and Propofol are commonly used during
surgeries. However, some heart medicine such as Heparin is missed
by the two models. Figs. 4 and 5 demonstrate the “focus” of the
two memories on diagnosis and procedure view, respectively. The
higher the write gate values, the more information of the medical
codes will be written into the memories. We can see both modes pay

Table 4: Example Recommended Medications by DMNCs on MIMIC-III dataset. Bold denotes matching against ground-truth.

Diagnoses

Calculus Of Gallbladder (57411),Vascular disorders of male genital organs (60883), Abdominal Pain
(78901), Poisoning By Other Tranquilizers (9695), Acute Myocardial Infarction Of Other Inferior

Wall (41042), Hematoma Complicating (99812), Malignant hypertensive heart disease 40200),
Dizziness and giddiness (7804), Venous (Peripheral) Insufficiency, Unspecified (45981),
Hemorrhage Of Gastrointestinal Tract (5789)

Procedures

Coronary Bypass Of Three Coronary Arteries (3613), Single Internal Mammary Artery Bypass
(3615), Extracorporeal circulation auxiliary to open heart surgery (3961), Insertion Of Intercostal
Catheter For Drainage (3404), Operations on cornea(114)

Top 5 Ground-truth drugs
(manually picked by experts)

Docusate Sodium (DOCU100L), Acetylsalicylic Acid (ASA81), Heparin (HEPA5I), Acetaminophen
(ACET325), Potassium Chloride (KCLBASEZ2)

Top 5 Late-fusion

Docusate Sodium (DOCU100L), Neostigmine (NEOSI), Acetaminophen (ACET325), Propofol

Recommendations (PROP100IG), Potassium Chloride (KCLBASE2)
Top 5 Early-fusion Docusate Sodium (DOCU100L), Acetaminophen (ACET325), Potassium Chloride
Recommendations (KCLBASEZ2), Dextrose (DEX50SY), Acetylsalicylic Acid (ASA81)
B Late-fusion B Late-fusion
0.5 B Early-fusion BN Early-fusion

Write gate value

57411 60883 78901 9695 41042 99812 40200 7804 45981 5789
Diagnosis codes

Figure 4: M;’s g}’ over diagnoses. Diagnosis codes of a
MIMIC-III patient is listed along the x-axis (ordered by pri-
ority) with the y-axis indicating how much the write gate
allows a diagnosis to be written to the memory M;.

less attention on last diagnoses corresponding to less severe symp-
toms. Compared to the late-fusion, the early-fusion mode keeps
more information on procedures, especially the heart-related events.
This may help increase the weight on heart-related medicines and
enable it to include Acetylsalicylic Acid, a common drug used after
heart attack in the top recommendations.

4.3 Disease Progression Task

Data used in this task are two chronic cohorts of diabetes and mental
EMRs collected between 2002-2013 from a large regional hospital in
Australia. Since we want to predict the next diagnoses for a patient
given his or her history of admission, we preprocessed the datasets
by removing patients with less than 2 admissions, which ends up
with 53,208 and 52,049 admissions for the two cohorts. In this data
set, procedures and medicines are grouped into intervention codes,
together with diagnosis codes forming a patient’s admission record.

0.8

=4
>
L

o
IS
L

Write gate value

0.2 4

0.0 =

3613 3615 3961 114
Procedure codes

Figure 5: M’s g} over procedures. Medical procedure codes
of a MIMIC-III patient is listed along the x-axis (in the or-
der of executions) with the y-axis indicating how much the
write gate allows a procedure to be written to the memory
M,.

The number of diagnosis and intervention codes are 249 and 1071,
respectively. We follow the same preprocessing steps and data split
as in [15]. Different from MIMIC-III, a patient record suffering from
chronic conditions often consists of multiple admissions, which is
suitable for the task of predicting disease progression. The average
number and the maximum number of admission per patient are
5.35 and 253, respectively.

Evaluations: For comparison, we choose the second best-runner
in our previous experiments WLAS and the current state-of-the-art
DeepCare [15] as the two baselines.

Implementations: We use the validation data set to tune the
hyper-parameters of our implementing methods and have the best
embedding and hidden dimensions are 20 and 64, respectively. The
word and memory size for DMNC are found to be 32 and 32, re-
spectively. For performance measurements, we use P@k metric

Table 5: Regional hospital test results. P@K is precision at
top K predictions in %.

Diabetes Mental
P@1 P@2 P@3 | P@l P@2 P@3
DeepCare | 66.2 59.6 53.7 52.7 469 40.2
WLAS 65.9 60.8 56.5 51.8 489 45.7
DMNC; 66.5 61.3 57.0 | 52.7 494 46.2
DMNC, 67.6 061.2 56.9 | 53.6 50.0 47.1

Model

(k = 1,2, 3) to make it comparable with DeepCare’s results reported
in [15].

Results: We report the results on test data of models for disease
progression task in Table 5. For both cohorts, our proposed model
consistently outperforms other methods and the performance gains
become larger as the number of predictions increase. Compared to
DeepCare which uses pre-trained embeddings and time-intervals
as extra information, our methods only use raw medical codes and
perform better. This emphasizes the importance of modeling view
interactions at event level. The late-fusion DMNC seems to perform
slightly better than the early-fusion DMNC in the diabetes cohort,
yet overall, the latter is the better one, which again validates its
ability to model all types of view interactions.

5 CONCLUSIONS

This paper proposes a novel deep learning architecture for asyn-
chronous two-view sequential learning called Dual Memory Neural
Computer (DMNC). Under our design, each input view is assigned
a neural controller to encode and store its events to a dedicated
memory. After all input views are stored, a decoder will access the
memories and synthesize the read contents to produce the final out-
put. Moreover, our model is equipped with two modes of memories,
enabling it to model comprehensively all types of view interactions.
Through extensive experiments, DMNC is compared with various
baselines and consistently shows better performance on three tasks:
sum of two sequences, drug prescription and disease progression.
Future works will focus on generalizing our model to multi-input
multi-output settings and extending the range of applications to
bigger problems such as multi-media and multi-agent systems.

ACKNOWLEDGMENTS

This work is partially supported by the Telstra-Deakin Centre of
Excellence in Big Data and Machine Learning.

REFERENCES

[1] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine trans-
lation by jointly learning to align and translate. ICLR, 2015.

[2] Avrim Blum and Tom Mitchell. Combining labeled and unlabeled data with
co-training. In Proceedings of the eleventh annual conference on Computational
learning theory, pages 92-100. ACM, 1998.

[3] Edward Choi, Mohammad Taha Bahadori, and Jimeng Sun. Doctor Al: Predicting
Clinical Events via Recurrent Neural Networks. arXiv preprint arXiv:1511.05942,
2015.

[4] Edward Choi, Mohammad Taha Bahadori, Jimeng Sun, Joshua Kulas, Andy
Schuetz, and Walter Stewart. RETAIN: An Interpretable Predictive Model for
Healthcare using Reverse Time Attention Mechanism. In Advances in Neural
Information Processing Systems, pages 3504-3512, 2016.

[5] J.S.Chung, A. Senior, O. Vinyals, and A. Zisserman. Lip reading sentences in
the wild. In IEEE Conference on Computer Vision and Pattern Recognition, 2017.

G

Alejandro Gonzalez, Gabriel Villalonga, Jiaolong Xu, David Vazquez, Jaume

Amores, and Antonio M Lopez. Multiview random forest of local experts combin-

ing rgb and lidar data for pedestrian detection. In Intelligent Vehicles Symposium

(IV), 2015 IEEE, pages 356-361. IEEE, 2015.

[7] Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. arXiv
preprint arXiv:1410.5401, 2014.

[8] Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo Danihelka, Ag-
nieszka Grabska-Barwinska, Sergio Gémez Colmenarejo, Edward Grefenstette,
Tiago Ramalho, John Agapiou, et al. Hybrid computing using a neural network
with dynamic external memory. Nature, 538(7626):471-476, 2016.

[9] Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735-1780, 1997.

[10] Oscar Luaces, Jorge Diez, José Barranquero, Juan José del Coz, and Antonio
Bahamonde. Binary relevance efficacy for multilabel classification. Progress in
Artificial Intelligence, 1(4):303-313, 2012.

[11] Fenglong Ma, Radha Chitta, Jing Zhou, Quanzeng You, Tong Sun, and Jing Gao.

Dipole: Diagnosis prediction in healthcare via attention-based bidirectional re-

current neural networks. In Proceedings of the 23rd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, pages 1903-1911. ACM,

2017.

Louis-Philippe Morency, Rada Mihalcea, and Payal Doshi. Towards multimodal

sentiment analysis: Harvesting opinions from the web. In Proceedings of the 13th

international conference on multimodal interfaces, pages 169-176. ACM, 2011.

Liqiang Nie, Luming Zhang, Yi Yang, Meng Wang, Richang Hong, and Tat-

Seng Chua. Beyond doctors: future health prediction from multimedia and

multimodal observations. In Proceedings of the 23rd ACM international conference

on Multimedia, pages 591-600. ACM, 2015.

Kamal Nigam and Rayid Ghani. Analyzing the effectiveness and applicability of

co-training. In Proceedings of the ninth international conference on Information

and knowledge management, pages 86-93. ACM, 2000.

Trang Pham, Truyen Tran, Dinh Phung, and Svetha Venkatesh. Predicting

healthcare trajectories from medical records: A deep learning approach. Journal

of Biomedical Informatics, 69:218-229, May 2017.

Soujanya Poria, Erik Cambria, and Alexander Gelbukh. Deep convolutional

neural network textual features and multiple kernel learning for utterance-level

multimodal sentiment analysis. In Proceedings of the 2015 conference on empirical

methods in natural language processing, pages 2539-2544, 2015.

[17] Soujanya Poria, Erik Cambria, Devamanyu Hazarika, Navonil Majumder, Amir
Zadeh, and Louis-Philippe Morency. Context-dependent sentiment analysis in
user-generated videos. In Proceedings of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), volume 1, pages 873-883,
2017.

[18] Aaditya Prakash, Siyuan Zhao, Sadid A Hasan, Vivek V Datla, Kathy Lee, Ashequl
Qadir, Joey Liu, and Oladimeji Farri. Condensed memory networks for clinical
diagnostic inferencing. In AAAI pages 3274-3280, 2017.

[19] N. Quadrianto, A.J. Smola, T.S. Caetano, and Q.V. Le. Estimating labels from label
proportions. The Journal of Machine Learning Research, 10:2349-2374, 2009.

[20] Shyam Sundar Rajagopalan, Louis-Philippe Morency, Tadas Baltrusaitis, and
Roland Goecke. Extending long short-term memory for multi-view structured
learning. In European Conference on Computer Vision, pages 338-353. Springer,
2016.

[21] Alain Rakotomamonjy, Francis Bach, Stéphane Canu, and Yves Grandvalet. More
efficiency in multiple kernel learning. In Proceedings of the 24th international
conference on Machine learning, pages 775-782. ACM, 2007.

[22] Jesse Read, Bernhard Pfahringer, Geoff Holmes, and Eibe Frank. Classifier chains
for multi-label classification. Machine learning, 85(3):333-359, 2011.

[23] Yale Song, Louis-Philippe Morency, and Randall Davis. Multi-view latent variable
discriminative models for action recognition. In Computer Vision and Pattern
Recognition (CVPR), 2012 IEEE Conference on, pages 2120-2127. IEEE, 2012.

[24] Sainbayar Sukhbaatar, arthur szlam, Jason Weston, and Rob Fergus. End-to-end

memory networks. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and

R. Garnett, editors, Advances in Neural Information Processing Systems 28, pages

2440-2448. Curran Associates, Inc., 2015.

Chang Xu, Dacheng Tao, and Chao Xu. A survey on multi-view learning. arXiv

preprint arXiv:1304.5634, 2013.

[26] A. Zadeh, P. P. Liang, N. Mazumder, S. Poria, E. Cambria, and L.-P. Morency.

Memory Fusion Network for Multi-view Sequential Learning. ArXiv e-prints,

February 2018.

Amir Zadeh, Minghai Chen, Soujanya Poria, Erik Cambria, and Louis-Philippe

Morency. Tensor fusion network for multimodal sentiment analysis. arXiv

preprint arXiv:1707.07250, 2017.

Amir Zadeh, Rowan Zellers, Eli Pincus, and Louis-Philippe Morency. Multimodal

sentiment intensity analysis in videos: Facial gestures and verbal messages. IEEE

Intelligent Systems, 31(6):82-88, 2016.

Yutao Zhang, Robert Chen, Jie Tang, Walter F Stewart, and Jimeng Sun. Leap:

Learning to prescribe effective and safe treatment combinations for multimorbid-

ity. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, pages 1315-1324. ACM, 2017.

[12

(13

(14

[15

[16

[25

[27

[28

[29

	Abstract
	1 Introduction
	2 Background
	2.1 Related Works
	2.2 DNC Overview

	3 Methods
	3.1 Asynchronous Two-View Sequential Learning: Problem Formulation
	3.2 Dual Memory Neural Computer
	3.3 Inference in DMNC
	3.4 Persistent Memory for Multiple Admissions

	4 Results
	4.1 Synthetic Task: Sum of Two Sequences
	4.2 Drug Prescription Task
	4.3 Disease Progression Task

	5 Conclusions
	Acknowledgments
	References

