
Introduction

One of the core tasks in multi-view learning is to capture 

relations among views. For sequential data, the relations not 

only span across views, but also extend throughout the view 

length to form long-term intra-view and inter-view 

interactions. In this paper, we present a new memory 

augmented neural network that aims to model these complex 

interactions between two asynchronous sequential views.
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On synthetic sum of two sequence task, DMNC 

outperforms other baselines by a huge margin of >55% 

(prediction accuracy). On healthcare application tasks, 

DMNC consistently demonstrates better results over 

other baselines such as LSTM, DNC [1], WLAS [2], 

DeepCare [3].

Dual Memory Neural Computer (DMNC). There are two encoders 

and one decoder implemented as LSTMs. The dash arrows represent 

cross-memory accessing in early-fusion mode
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We leverage memory read/write operations from DNC [1] to 

capture long-term dependencies in multiple sequential views. 

To model interactions among views, our model supports

early-fusion and late-fusion addressing schemes.

Memory reading:

• Controller output: 𝑜𝑡𝑖
𝑖 = 𝐿𝑆𝑇𝑀𝑖 𝑥𝑡𝑖

𝑖 , ℎ𝑡𝑖−1
𝑖 ; 𝑖 = 1,2

• Late-fusion: 𝑟𝑡𝑖
𝑖 = 𝑚𝑟𝑒𝑎𝑑

𝑖 (𝑜𝑡𝑖
𝑖 , 𝑀𝑖); 𝑖 = 1,2

• Early-fusion: 𝑟𝑡𝑖
𝑖 = 𝑚𝑟𝑒𝑎𝑑 (𝑜𝑡𝑖

𝑖 , [𝑀1, 𝑀2]); 𝑖 = 1,2

Memory writing:

• Gated cache: 𝑐𝑡 = 𝑔𝑡
𝑐 ∘ 𝑐𝑡−1 + 1 − 𝑔𝑡

𝑐 𝑣𝑡; 𝑐0 = 0

• Update: 𝑀𝑡 = 𝑀𝑡−1 ∘ 1 − 𝑔𝑡
𝑤𝑤𝑡

𝑤𝑒𝑡 + 𝑔𝑡
𝑤𝑤𝑡

𝑤𝑐𝑡

Persistent memory for healthcare data (EMRs):

• Keep memory updating during admission encoding

• Flush memory when processing a new patient record

Top-5 drugs prescribed for a patient given his current 

diagnoses and procedures: Docusate Sodium (DOCU100L), 

Acetaminophen (ACET325), Potassium Chloride (KCLBASE2), 

Dextrose (DEX50SY), Acetylsalicylic Acid (ASA81)

Write gate scores that DMNC assigns to each timestep in two input sequences.


