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Abstract

We introduce a novel training procedure for policy gradi-
ent methods wherein episodic memory is used to optimize
the hyperparameters of reinforcement learning algorithms on-
the-fly. Unlike other hyperparameter searches, we formulate
hyperparameter scheduling as a standard Markov Decision
Process and use episodic memory to store the outcome of
used hyperparameters and their training contexts. At any pol-
icy update step, the policy learner refers to the stored ex-
periences, and adaptively reconfigures its learning algorithm
with the new hyperparameters determined by the memory.
This mechanism, dubbed as Episodic Policy Gradient Train-
ing (EPGT), enables an episodic learning process, and jointly
learns the policy and the learning algorithm’s hyperparame-
ters within a single run. Experimental results on both contin-
uous and discrete environments demonstrate the advantage of
using the proposed method in boosting the performance of
various policy gradient algorithms.

Introduction
The current success of deep reinforcement learning relies
on the ability to use gradient-based optimizations for pol-
icy and value learning [27, 34]. Approaches such as policy
gradient (PG) methods have achieved remarkable results in
various domains including games [26, 33, 39, 8], robotics
[16, 30] or even natural language processing [43]. However,
the excellent performance of PG methods is heavily depen-
dent on tuning the algorithms’ hyperparameters [6, 42]. Ap-
plying a PG method to new environments often requires dif-
ferent hyperparameter settings and thus retuning [10]. The
large amount of hyperparameters severely prohibits machine
learning practitioners from fully utilizing PG methods in dif-
ferent reinforcement learning environments.

As a result, there is a huge demand for automating hy-
perparameter selection for policy gradient algorithms, and it
remains a critical part of the Automated Machine Learning
(AutoML) movement [13]. Automatic hyperparameter tun-
ing has been well explored for supervised learning. Simple
methods such as grid search and random search are effec-
tive although computationally expensive [2, 18]. Other com-
plex methods such as Bayesian Optimization (BO [35]) and
Evolutionary Algorithms (EA [7]) can efficiently search for
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optimal hyperparameters. Yet, they still need multiple train-
ing runs, have difficulty scaling to high-dimensional settings
[32] or require extensive parallel computation [14]. Recent
attempts introduce online hyperparameter scheduling, that
jointly optimizes the hyperparameters and parameters in sin-
gle run overcoming local optimality of training with fixed
hyperparameters and showing great potential for supervised
and reinforcement learning [14, 40, 29, 28].

However, one loophole remains. These approaches do not
model the context of training in the optimization process,
and the problem is often treated as a stateless bandit or
greedy optimization [29, 28]. Ignoring the context prevents
the use of episodic experiences that can be critical in op-
timization and planning. As an example, we humans often
rely on past outcomes of our actions and their contexts to
optimize decisions (e.g. we may use past experiences of traf-
fic to not return home from work at 5pm). Episodic memory
plays a major role in human brains, facilitating recreation
of the past and supporting decision making via recall of
episodic events [38]. We are motivated to use such a mecha-
nism in training wherein, for instance, the hyperparameters
that helped overcome a past local optimum in the loss sur-
face can be reused when the learning algorithm falls into a
similar local optimum. This is equivalent to optimizing hy-
perparameters based on training contexts. Patterns of bad
or good training states previously explored can be reused,
and we refer to this process as selecting hyperparameters. To
implement this mechanism we use episodic memory. Com-
pared to other learning methods, the use of episodic memory
is non-parametric, fast and sample-efficient, and quickly di-
rects the agents towards good behaviors [23, 17, 3].

This problem of formulating methods that can take
the training context into consideration and using them as
episodic experiences in optimizing hyperparameters remains
unsolved. The first challenge is to effectively represent the
training context of PG algorithms that often involve a large
number of neural network parameters. The second chal-
lenge is sample-efficiency. Current performant hyperparam-
eter searches [14, 28] often necessitate parallel interactions
with the environments, which is expensive and not always
feasible in real-world applications. Ideally, hyperparameter
search methods should not ask for additional observations
that the PG algorithms already collect. If so, it must be
solved as efficiently as possible to allow efficient training
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Figure 1: Hyper-RL structure. The hyper-state (green circle) is captured from the PG models’ parameters and gradients at every
Hyper-RL step (1). Given the hyper-states, the hyper-agent takes hyper-actions, choosing hyperparameters for the PG method
to update the models (2). The update lasts U steps. After the last update step (3), the RL agent starts environment phase with the
current policy, collecting an empirical return G after T environment steps (4). G is used as the hyper-reward for the last policy
update step (blue diamond) (5). Other update steps (red diamond) are assigned with hyper-reward 0.

of PG algorithms.
We address both these issues with a novel solution,

namely Episodic Policy Gradient Training (EPGT)–a PG
training scheme that allows on-the-fly hyperparameter op-
timization based on episodic experiences. The idea is to for-
mulate hyperparameter scheduling as a Markov Decision
Process (MDP), dubbed as Hyper-RL. In the Hyper-RL, an
agent (hyper-agent) acts to optimize hyperparameters for the
PG algorithms that optimize the policy for the agent of the
main RL (RL-agent). The two agents operate alternately: the
hyper-agent acts to reconfigure the PG algorithms with dif-
ferent hyperparameters, which ultimately changes the policy
of the RL agent (update phase); the RL agent then acts to
collect returns (environment phase), which serves as the re-
wards for the hyper-agent. To build the Hyper-RL, we pro-
pose mechanisms to model its state, action and reward. In
particular, we model the training context as the state of the
Hyper-RL by using neural networks to compress the param-
eters and gradients of PG models (policy/value networks)
into low-dimensional state vectors. The action in the Hyper-
RL corresponds to the choice of hyperparameters and the
reward is derived from the RL agent’s reward.

We propose to solve the Hyper-RL through episodic
memory. As an episodic memory provides a direct bind-
ing from experiences (state-action) to final outcome (return),
it enables fast utilization of past experiences and acceler-
ates the searching of near-optimal policy [23]. Unlike other
memory forms augmenting RL agents with stronger work-
ing memory to cope with partial observations [11, 21] or
contextual changes within an episode [22], episodic mem-
ory persists across agent lifetime to maintain a global value
estimation. In our case, the memory estimates the value of a
state-action pair in the Hyper-RL by nearest neighbor mem-
ory lookup [31]. To store learning experience, we use a novel
weighted average nearest neighbor writing rule that quickly
propagates the value inside the memory by updating mul-
tiple memory slots per memory write. Our episodic mem-
ory is designed to cope with noisy and sparse rewards in the
Hyper-RL.

Our key contribution is to provide a new formulation for
online hyperparameter search leveraging context of previous
training experiences, and demonstrate that episodic mem-
ory is a feasible way to solve this. This is also the first time

episodic memory is designed for hyperparameter optimiza-
tion. Our rich set of experiments shows that EPGT works
well with various PG methods and diverse hyperparameter
types, achieving higher rewards without significant increase
in computing resources. Our solution has desirable proper-
ties, it is (i) computationally cheap and run once without par-
allel computation, (ii) flexible to handle many hyperparam-
eters and PG methods, and (iii) shows consistent/significant
performance gains across environments and PG methods.

Methods
Hyperparameter Reinforcement Learning
(Hyper-RL)
In this paper, we address the problem of online hyperparam-
eter search. We argue that in order to choose good values,
hyperparameter search (HS) methods should be aware of the
past training states. This intuition suggests that we should
treat the HS problem as a standard MDP. Put in the context
of HS for RL, our HS algorithm becomes a Hyper-RL al-
gorithm besides the main RL algorithm. In Hyper-RL, the
hyper-agent makes decisions at each policy update step to
configure the PG algorithm with suitable hyperparameters
ψ. The ultimate goal of the Hyper-RL is the same as the
main RL’s: to maximize the return of the RL agent.

To construct the Hyper-RL, we define its state sψ , action
aψ and reward rψ . Hereafter, we refer to them as hyper-
state, hyper-action and hyper-reward to avoid confusion with
the main RL’s s, a and r. Fig. 1 illustrates the operation of
Hyper-RL. In the update phase, the Hyper-RL runs for U
steps. At each step, taking the hyper-state captured from the
PG models’ parameters and gradients, the hyper-agent out-
puts hyper-actions, producing hyperparameters for PG algo-
rithms to update the policy/value networks accordingly. Af-
ter the last update (blue diamond), the resulting policy will
be used by the RL agent to perform the environment phase,
collecting returns after T environment interactions. The re-
turns will be used in the PG methods, and utilized as hyper-
reward for the last policy update step. Below we detail the
hyper-action, hyper-reward and hyper-state.

Hyper-action A hyper-action aψ defines the values for
the hyperparameters ψ of interest. For simplicity, we assume
the hyper-action is discrete by quantizing the range of each



hyperparameter into B discrete values. A hyper-action aψ se-
lects a set of discrete values, each of which is assigned to a
hyperparameter (see more Appendix A.2).

Hyper-reward The hyper-reward rψ is computed based
on the empirical return that the RL agent collects in
the environment phase after hyperparameters are selected
and used to update the policy. The return is G =

Est:t+T ,at:t+T
[∑T

k=0 γ
krt+k

]
where t and T are the envi-

ronment step and learning horizon, respectively. Since there
can be U consecutive policy update steps in the update phase,
the last update step in the update phase receives hyper-
reward G while others get zero hyper-reward, making the
Hyper-RL, in general, a sparse reward problem. That is,

r
ψ
i =

{
G if i = U

0 otherwise
(1)

To define the objective for the Hyper-RL, we treat the up-
date phase as a learning episode. Each learning episode can
lasts for multiple of U update steps and for each step i in
the episode, we aim to maximize the hyper-return G

ψ
i =∑Un

j≥i r
ψ
j where n ∈ N+. In this paper, n is simply set to

1 and thus, Gψi = G.
Hyper-state A hyper-state sψ should capture the current

training state, which may include the status of the trained
model, the loss function or the amount of parameter update.
We fully capture sψ if we know exactly the loss surface and
the current value of the optimized parameters, which can re-
sult in perfect hyperparameter choices. This, however, is in-
feasible in practice, thus we only model observable features
of the hyper-state space. The Hyper-RL is then partially ob-
servable and noisy. In the following, we propose a method
to represent the hyper-state efficiently.

Algorithm 1: Episodic Policy Gradient Training.
Require: A parametric policy function πθ of the main RL

algorithm PGψ(πθ, G) where ψ is the set of hyper-
paramters for training πθ andG the empirical return col-
lected by function Agent(πθ).

1: Initialize the episodic memory M = ∅
2: for episode = 1, 2, ... do {loop over learning episodes}
3: Initialize a buffer D = ∅{storing hyper-state, action,

and reward within a learning episode}
4: for i = 1, . . . U do {loop over policy updates}
5: Compute φ(sψi ). Select a

ψ
i by ε-greedy with

Q
(
s
ψ
i , a

ψ
)

= M.read
(
φ
(
s
ψ
i

)
, aψ
)

(Eq. 3)

6: Convert aψi to the hyperparameter values ψi and
update θ ← PGψi(πθ, G)

7: Compute rψi (Eq. 1). Add (φ(sψi ), aψi , r
ψ
i ) to D

8: if i == U then G = Agent(πθ)
9: end for

10: Update episodic memory with M.update(D) (Eq. 4)
11: end for

Hyper-state representation Our hypothesis is that one
signature feature of the hyper-state is the current value

of optimized parameters θ and the derivatives of the PG
method’s objective function w.r.t θ. We maintain a list of the
last Norder first-order derivatives: {∇θn}Nordern=1 , which pre-
serves information of high-order derivatives (e.g. a second-
order derivative can be estimated by the difference between
two consecutive first-order derivatives). Let us denote the
parameters and their derivatives, often in tensor form, as
θ =

{
W 0
m

}M
m=1

and ∇θn = {Wn
m}

M
m=1 where M is the

number of layers in the policy/value network. {θ,∇θn} can
be denoted jointly {Wn

m}
Norder,M
n=0,m=1 or {Wn

m} for short (see
Appendix B.4 for dimension details of Wn

m).
Merely using {Wn

m} to represent the learning state is still
challenging since the number of parameters is enormous as it
often is in the case of recent PG methods. To make the hyper-
state tractable, we propose to use linear transformation to
map the tensors to lower-dimensional features and concate-
nate them to create the state vector sψ = [snm]

Norder,M
n=0,m=1 .

Here, snm is the feature of Wn
m, computed as

snm = vec (Wn
mC

n
m) (2)

where Cnm ∈ Rdnm×d is the transformation matrix, dnm the
last dimension of Wn

m (dnm � d) and vec (·) the vectorize
operator, flattening the input tensor. To make our represen-
tation robust, we propose to learn the transformation Cnm as
described in the next section.

Learning to represent hyper-state and memory key We
map sψ to its embedding by using a feed-forward neural
network φ, resulting in the state embedding φ

(
sψ
)
∈ Rh.

φ
(
sψ
)

later will be stored as the key of the episodic mem-
ory. We can just use random φ and Cnm for simplicity. How-
ever, to encourage φ

(
sψ
)

to store meaningful information
of sψ , we propose to reconstruct sψ from φ

(
sψ
)

via an-
other decoder network ω and minimize the following re-
construction error Lrec =

∥∥ω (φ (sψ))− sψ
∥∥2
2
. Similar to

[3], we employ latent-variable probabilistic models such as
VAE to learn Cnm and update the encoder-decoder networks.
Thanks to using Cnm projection to lower dimensional space,
the hyper-state distribution becomes simpler and potential
for VAE reconstruction. Notably, the VAE is jointly trained
online with the RL agent and the episodic memory (more
details in Appendix A.3).

Episodic Control for solving the Hyper-RL
Theoretically, given the hyper-state, hyper-action and hyper-
reward clearly defined in the previous section, we can use
any RL algorithm to solve the Hyper-RL problem. However,
in practice, the hyper-reward is usually sparse and the num-
ber of steps of the Hyper-RL is usually much smaller than
that of the main RL algorithm (U� T ). It means parametric
methods (e.g. DQN) which require a huge number of update
steps are not suitable for learning a good approximation of
the Hyper-RL’s Q-value function Q

(
s
ψ
i , a

ψ
i

)
.

To quickly estimate Q
(
s
ψ
i , a

ψ
i

)
, we maintain an episodic

memory that lasts across learning episodes and stores
the outcomes of selecting hyperparameters from a given
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Figure 2: Performance on (a) MountainCarContinuous (log scale) and (b) BipedalWalker over env. steps. In each plot, average
return is on the left with mean and std. over 10 runs. The right is smoothed (taking average over a window of 100 steps) learning
rate α found by the baselines (first 3 runs).

hyper-state. We hypothesize that the training process in-
volves hyper-states that share similarities, which is suit-
able for episodic recall using KNN memory lookup. Con-
cretely, the episodic memory M binds the learning expe-
rience

(
φ
(
s
ψ
i

)
, aψi

)
–the key, where φ is an embedding

function, to the approximated expected hyper-return ~G
ψ
i –the

value. We index the memory using key
(
φ
(
s
ψ
i

)
, aψi

)
to ac-

cess the value, a.k.a M
[
φ
(
s
ψ
i

)
, aψi

]
= ~G

ψ
i . Computing and

updating the Q
(
s
ψ
i , a

ψ
i

)
corresponds to two memory op-

erators: read and update. The read
(
φ
(
s
ψ
i

)
, aψi

)
takes

the hyper-state embedding plus hyper-action and returns the
hyper-state-action value Q

(
s
ψ
i , a

ψ
i

)
. The update (D) takes

a buffer D containing observations (sψi , a
ψ
i , r

ψ
i )Ui=1, and up-

dates the content of the memory M. The details of the two
operators are as follows.

Memory reading Similarly to [31], we estimate the state-
action value of any s

ψ
i -aψi pair by:

Q
(
s
ψ
i , a

ψ
i

)
= read

(
s
ψ
i , a

ψ
i

)
(3)

=

∑|N (i)|
k=1 Sim (i, k) M

[
φ
(
s
ψ
k

)
, aψi

]
∑|N (i)|
k=1 Sim (i, k)

where N (i) denotes the neighbor set of the embedding
φ
(
s
ψ
i

)
in M and φ

(
s
ψ
k

)
the k-th nearest neighbor. N (i)

includes φ
(
s
ψ
i

)
if it exists in M. Sim (i, k) is a kernel mea-

suring the similarity between φ
(
s
ψ
k

)
and φ

(
s
ψ
i

)
.

Memory update To cope with noisy observations from
the Hyper-RL, we propose to use weighted average to write
the hyper-return to the memory slots. Unlike max writing
rule [3] that always stores the best return, our writing prop-
agates the average return inside the memory, which helps
cancel out the noise of the Hyper-RL. In particular, for each
observed transition in a learning episode (stored in the buffer

D), we compute the hyper-return G
ψ
i . The hyper-return is

then used to update the memory such that the action value
of φ

(
s
ψ
i

)
’s neighbors is adjusted towards G

ψ
i with speeds

relative to the distances [19]:

M
[
φ
(
s
ψ
k

)
, aψi

]
← M

[
φ
(
s
ψ
k

)
, aψi

]
+ β

∆ikSim (i, k)∑|N (i)|
k=1 Sim (i, k)

(4)

where φ
(
s
ψ
k

)
is the k-th nearest neighbor of φ

(
s
ψ
i

)
in

N (i), ∆ik = G
ψ
i − M

[
φ
(
s
ψ
k

)
, aψi

]
, and 0 < β < 1 the

writing rate. If the key
(
φ
(
s
ψ
i

)
, aψi

)
is not in M, we also

add
(
φ
(
s
ψ
i

)
, aψi , G

ψ
i

)
to the memory. When the stored tu-

ples exceed memory capacity Nmem, the earliest added tu-
ple will be removed.

Under this formulation, M
[
φ
(
s
ψ
i

)
, aψi

]
is an approx-

imation of the expected hyper-return collected by taking
the hyper-action a

ψ
i at the hyper-state s

ψ
i (see Appendix

C for proof). As we update several neighbors at one write,
the hyper-return propagation inside the episodic memory is
faster and helps to handle the sparsity of the Hyper-RL. Un-
less stated otherwise, we use the same neighbor size |N (i)|
for both reading and writing process, denoted asK for short.

Integration with PG methods Our episodic control
mechanisms can be used to estimate the hyper-state-action-
value of the Hyper-RL. The hyper-agent uses that value to
select the hyper-action through ε-greedy policy and sched-
ule the hyperparameters of PG methods. Algo. 1, Episodic
Policy Gradient Training (EPGT), depicts the use of our
episodic control with a generic PG method.

Experimental results
Across experiments, we examine EPGT with different PG
methods including A2C [26], ACKTR [39] and PPO [33].
We benchmark EPGT against the original PG methods with
tuned hyperparameters and 4 recent hyperparameter search
methods. The experimental details can be found in the Ap-
pendix B.



Model HalfCheetah Hopper Ant Walker
TMG♠ 1,568 378 950 492
HOOF♠ 1,523 350 952 467
HOOF♦ 1,427±293 452±40.7 954±8.57 674±195
EPGT 2,530±1268 603±187 1,083±126 888±425

Table 1: EPGT vs sequential online hyperparameter search
(A2C as the PG). Bold denotes statistically better results in
terms of Cohen effect size > 0.5. We train agents for 5 mil-
lion steps and report the mean (and std. if applicable) over
10 runs. ♠ is from [29] (no std. reported) and ♦ is our run.

Why episodic control?
In this section, we validate the choice of episodic control to
solve the proposed Hyper-RL problem. As such, we choose
A2C as the PG method and examine EPGT, random hyper-
action (RND) and DQN [27] as 3 methods to schedule the
learning rate (α) for A2C. We also compare with A2C using
different fixed-α within the search range (default, min and
max learning rates). We test on 2 environments: Mountain
Car Continuous (MCC) and Bipedal Walker (BW) with long
and short learning rate search ranges ([4 × 10−5, 10−2] and
[2.8× 10−4, 1.8× 10−3], respectively).

Fig. 2 demonstrates the learning curves and learning rate
schedules found by EPGT, RND and DQN. In MCC, the
search range is long, which makes RND performance un-
stable, far lower than the fixed-α A2Cs. DQN also strug-
gles to learn good α schedule for A2C since the number
of trained environment steps is only 20,000, which corre-
sponds to only 4,000 steps in the Hyper-RL. This might not
be enough to train DQN’s value network and leads to slower
learning. On the contrary, EPGT helps A2C achieve the best
performance faster than any other baseline. In BW, thanks
to shorter search range and large number of training steps,
RND and DQN show better results, yet still underperform
the best fixed-α A2C. By contrast, EPGT outperforms the
best fixed-α A2C by a significant margin, which confirms
the benefit of episodic dynamic hyperparameter scheduling.

Besides performance plots, we visualize the selected val-
ues of learning rates over training steps for the first 3 runs of
each baseline. Interestingly, DQN finds more consistent val-
ues, often converging to extreme learning rates, indicating
that the DQN mostly selects the same action for any state,
which is unreasonable. EPGT, on the other hand, prefers
moderate learning rates, which keep changing depending on
the state. Compared to random schedules by RND, those
found by EPGT have a pattern, either gradually decreas-
ing (MCC) or increasing (BW). In terms of running time,
EPGT runs slightly slower than A2C without any scheduler,
yet much faster than DQN (see Appendix’s Table 5).

EPGT vs online hyperparameter search methods
Our main baselines are existing methods for dynamic tun-
ing of hyperparameters of policy gradient algorithms, which
can be divided into 2 groups: (i) sequential HOOF [29] and
Meta-gradient [40] and (ii) parallel PBT [14] and PB2 [28].
We follow the same experimental setting (PG configuration
and environment version) and apply our EPGT to the same

Model BW LLC Hopper IDP
PBT° 223 159 1492 8,893
PB2° 276 235 2,346 8,893
PB2♦ 280 223 2,156 9,253
EPGT 282 235 3,253 9,322

Table 2: EPGT vs parallel online hyperparameter search
(PPO as the PG). Following [28], we train the PPO agents
for 1 million steps and report the best median over 10 runs.°
denotes the numbers reported in [28], and ♦ is our run.

set of optimized hyperparameters, keeping other hyperpa-
rameters as in other baselines. We also rerun the baselines
HOOF and PB2 using our codebase to ensure fair compar-
ison. For the first group, the PG method is A2C and only
the learning rate is optimized, while for the second group,
the PG method is PPO and we optimize 4 hyperparameters
(learning rate α, batch size b, GAE λ and PPO clip ε).

Table 1 reports the mean test performance of EPGT
against Tuned Meta-gradient (TMG) and HOOF on 4 Mu-
joco environments. EPGT demonstrates better results in all
4 tasks where HalfCheetah, Hopper and Walker observe sig-
nificant gain. Notably, compared to HOOF, EPGT exhibits
higher mean and variance, indicating that EPGT can find
distinctive solutions, breaking the local optimum bottleneck
of other baselines.

Table 2 compares EPGT with PBT and PB2 on corre-
sponding environments and evaluation metrics. In the four
tasks used in PB2 paper, EPGT achieves better median best
score for 3 tasks while maintaining competitive performance
in LLC task. We note that EPGT is jointly trained with the
PG methods in a single run and thus, achieves this excellent
performance without parallel interactions with the environ-
ments as PB2 or PBT. Learning curves of our runs for the
above tasks are in Appendix B.3.

EPGT vs grid-search/manual tuning
Atari We now examine EPGT on incremental sets of hy-
perparameters. We adopt 6 standard Atari games and train
2 PG methods: ACKTR and PPO for 20 million steps per
game. For ACKTR, we apply EPGT to schedule the trust re-
gion radius δ, step size η and the value loss coefficient lv .
For PPO, the optimized hyperparameters are learning rate
α, trust region clip ε and batch size b. These are important
and already tuned hyperparameters for Atari task by prior
works. We form 3 hyperparameter sets for each PG method.
For each set, we further perform grid search near the de-
fault hyperparameters and record the best tuned results. We
compare these results with EPGT’s and report the relative
improvement on human normalized score (see Fig. 3 for the
case of ACKTR, full in Appendix Fig. 9).

The results indicate that, for all hyperparameter sets,
EPGT on average show gains up to more than 10% over
tuned PG methods. For certain games, the performance gain
can be more than 30%. Jointly optimizing more hyperpa-
rameters is generally better for PPO while optimizing only
δ gets the most improvement for ACKTR.
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Figure 3: Performance improvement on 6 Atari games ap-
plying EPGT to optimize incremental sets of hyperparame-
ters with ACKTR as PG. We run each game for 20 million
frames and report the average over 5 runs.

Mujoco Here, we conduct experiments on 6 Mujoco envi-
ronments: HalfCheetah, Hooper, Walker2d, Swimmer, Ant
and Humanoid. For the last two challenging tasks, we train
with 10M steps while the others 1M steps. The set of op-
timized hyperparameters are {α, ε, λ, b}. The baseline De-
fault (PPO) has fixed hyperparameters, which are well-tuned
by previous works, and PB2 uses the same hyperparameter
search range as our method. Random hyper-action (RND)
baseline is included to see the difference between random
and episodic policy in Hyper-RL formulation.

On 6 Mujoco tasks, on average, EPGT helps PPO earn
more than 583 score while PB2 fails to clearly outperform
the tuned PPO (see more in Appendix Fig. 12). Fig. 4 (left)
illustrates the result on HalfCheetah where performance gap
between EPGT and other baselines can be clearly seen. De-
spite using the same search range, PB2 and RND show lower
average return. We include the hyperparameters used by
EPGT and RND throughout training in Fig. 4 (right). Over-
all, EPGT’s schedules do not diverge much from the default
values, which are already well-tuned. However, we can see
a pattern of using smaller hyperparameters during middle
phase of training, which aligns with the moments when there
are changes in the performance.

Ablation studies
In this section, we describe the hyperparameter selection for
EPGT used in above the experiments. We note that although
EPGT introduces several hyperparameters, it is efficient to
pick reasonable values and keep using them across tasks.

Learning to represent the hyper-state The hyper-state
is captured by projecting the model’s weights and their gra-
dients to a low-dimensional vectors using Cnm. The state is
further transformed to the memory’s key using the mapping
network φ. Here, we validate the choice of using VAE to
learn Cnm and φ by comparing it with random mapping. We
use PG A2C and test the two EPGT variants on Mountain
Car (MC). Fig. 5 (a, left) demonstrates that EPGT with VAE
training learns fastest and achieves the best convergence.
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Figure 4: Performance on the representative HalfCheetah
task over env. steps. The left is testing return over training
iterations (mean ± std. over 10 runs) and the right hyper-
parameters schedule for PG methods found by EPGT and
RND in the first 3 runs.

EPGT with random projections can learn fast but shows sim-
ilar convergence as the original A2C.

We visualize the final representations φ
(
sψ
)

by using t-
SNE and use colors to denote the corresponding average
values V̂

(
sψ
)

=
∑
a M
(
φ
(
sψ
)
, aψ
)

in Fig. 5 (a, right).
The upper figure is randomly projected hyper-states and the
lower VAE-trained ones at 5,000 environment step. From
both figures, we can see that similar-value states tend to lie
together, which validates the hypothesis on existing similar
training contexts. Compared to the random ones, the rep-
resentations learned by VAE exhibit clearer clusters. Clus-
ter separation is critical for nearest neighbor memory ac-
cess in episodic control, and thus explains why VAE-trained
EPGT outperforms random EPGT significantly. Notably,
training the VAE is inexpensive. Empirical results demon-
strates that with reasonable hyper-state sizes, the VAE con-
verges quickly (see Appendix Fig. 6).

Writing rule To verify the contribution of our proposed
writing rule, we test different number of writing neighbor
size (Kw). In this experiment, the reading size is fixed to
3 and different from the writing size. Fig. 5 (b) shows the
learning curves of EPGT using different Kw against the
original PPO. When Kw = 1, our rule becomes single-
slot writing as in [3, 31], which even underperforms using
default hyperparameters. By contrast, increasing Kw = 3
boosts EPGT’s performance dramatically, on average im-
proving PPO by around 500 score in Alien game. Increas-
ing Kw further seems not helpful since it may create noise
in writing. Thus, we use Kw = 3 in all of our experiments.
Others showing our average writing rule is better than tradi-
tional max rule and examining different numbers of general
neighbor size K are in Appendix B.4.

Order of representation Finally, we examine EPGT’s
performance with different order of representation (Norder).
Norder = 0 means the hyper-state only includes the parame-
ters θ. Increasing Norder gives more information, providing
better state representations. That holds true in MsPacman
game when we increase the order from 0 to 2 as shown in
Fig. 5 (c). However, when Norder is set to 4, the perfor-
mance drops since the hyper-states now are in a very high
dimension (16K) and VAE does not work well in this case.
Hence, we use Norder = 2 for all of our experiments.
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Figure 5: (a) Performance (left) and hyper-state representations φ
(
sψ
)

(right) on Mountain Car (MC) using PG A2C where
t-SNE is used to project φ

(
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)

to 2d space, showing the quality of representation learned by VAE (below) versus Random
mapping (above). Performance on Alien (b) and MsPacman (c) using PG PPO with different Kw and Norder, respectively. The
curves are mean and std. over 5 runs.

Related works
Hyperparameter search Automatic hyperparameter tun-
ing generally requires multiple training runs. Parallel search
methods such as grid or random search [2, 18] perform mul-
tiple runs concurrently and pick the hyperparameters that
achieve best result. These methods are simple yet expensive.
Sequential search approaches reduce the number of runs by
consecutively executing experiments using a set of candidate
hyperparameters and utilize the evaluation result to guide
the subsequent choice of candidates [12]. Bayesian Opti-
mization approaches [4] exploit the previous experimental
results to update the posterior of a Bayesian model of hyper-
parameters and explore promising hyperparameter regions.
They have been widely used in hyperparameter tuning for
various machine learning algorithms including deep learn-
ing [35, 15]. Recently, to speed up the process, distributed
versions of BO are also introduced to evaluate in parallel
batches of hyperparameter settings [9, 5].

However, these approaches still suffer from the issue of
computational inefficiency, demanding high computing re-
sources, increasing the training time significantly. If ap-
plied to RL, they require more environment interactions,
which leads to sample inefficiency. In addition, the hyper-
parameters found by these methods are usually fixed, which
can be suboptimal [25]. Inspired by biological evolution,
population-based methods initially start as random search
then select best performing hyperparameter instances to gen-
erate subsequent hyperparameter candidates, providing a hy-
brid solution between parallel and sequential search [7, 41].

Recent works propose using evolutionary algorithms to
jointly learn the weights and hyperparameters of neural net-
works under supervised training [14, 24]. In BPT [14] as
an example, multiple training are executed asynchronously
and evaluated periodically. Under-performing models are re-
placed by better ones whose hyperparameters evolve to ex-
plore better configurations. This approach allows hyperpa-
rameter scheduling on-the-fly but still requires a large num-
ber of parallel runs and are thus unsuitable for machines with
small computational budget.

On-the-fly hyperparameter search for reinforcement

learning Early works on gradient-based hyperparameter
search focus on learning rate adjustment [36, 1]. The ap-
proach has been recently extended to RL by using the meta-
gradient of the return function to adjust the hyperparame-
ters such as discount factor or bootstrapping parameter [40].
Hence, in this approach, the return needs to be a differen-
tiable function w.r.t the hyperparameters, which cannot ex-
tend to any hyperparameter type such as “clip” or policy gra-
dient algorithm such as TRPO.

HOOF [29] is an alternative to meta-gradient methods
wherein hyperparameter optimization is done via random
search and weighted important sampling. The method re-
lies on off-policy estimate of the value of the policy, which
is known to have high variance and thus requires en-
forcing additional KL constraint. The search is also lim-
ited to some specific hyperparameters. Population-based ap-
proaches have been applied to RL hyperparameter search.
These methods become more efficient by utilizing off-policy
PG’s samples [37] and small-size population [28], showing
better results than PBT or BO in RL domains. However, they
still suffer from the inherited expensive computation issue
of population-based training. All of these prior works do not
formulate hyperparameter search as a MDP, bypassing the
context of training, which is addressed in this paper.

Discussion
We introduced Episodic Policy Gradient Training (EPGT),
a new approach for online hyperparameter search using
episodic memory. Unlike prior works, EPGT formulates the
problem as a Hyper-RL and focuses on modeling the train-
ing state to utilize episodic experiences. Then, an episodic
control with improved writing mechanisms is employed to
search for optimal hyperparameters on-the-fly. Our experi-
ments demonstrate that EPGT can augment various PG al-
gorithms to optimize different types of hyperparameters,
achieving better results. Current limitations of EPGT are
the coarse discrete action spaces and simplified hyper-state
modeling using linear mapping. We will address these is-
sues and extend our approach to supervised training in future
works.
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Appendix
A. Details of methodology
A.1 Hyper-reward design Each step of the Hyper-RL re-
quires a hyper-reward. The hyper-reward reflects how well
the hyper-agent is performing to help the RL agent in the
main RL’s environment. The tricky part is the RL agent’s
performance is not always measured at every Hyper-RL step
(policy update step).

We define U the interval of Hyper-RL steps (the up-
date phase) between 2 performance measurement of the RL
agent. At the end of each update phase, after taking hyper-
action and update models, the performance is evaluated in
the environment phase, resulting in the roll-out return G,
which will be used as hyper-reward for the final step of the
update phase. For in-between steps in the update phase, there
is no direct way to know the intermediate outcome of each
hyper-action, hence a hyper-reward 0 is assigned, making
Hyper-RL generally a sparse problem.

One may think of assigning in-between steps the same
hyper-return, which is collected from the previous/next en-
vironment phase to avoid sparse hyper-reward. However, it
does not make sense to use past/future outcomes to assign
reward for current steps. Hence, we choose the sparse reward
scheme and that is also one motivation for using episodic
memory.

Since EPGT reuses PG return, it does not require extra
computation for hyper-reward, unlike HOOF (recomputing
returns with important sampling) or population-based meth-
ods (collecting return in parallel).

A.2 Hyper-action quantization For most types of hy-
perparameters, we use uniform quantization within a range
around the default value to derive the hyper-action. For ex-
ample, when B = 3, GAE’s λ will have the possible values
{0.95, 0.975, 0.99} and PPO’s clip ε ∈ {0.1, 0.2, 0.3}

For learning rate, uniform quantization for a certain range
will not necessarily include the default learning rate, which
can be a good candidate for the hyperparameter. Hence, we
use a different quantization formula as follows,

{
α∗

(B− 1) /2
, ...,

α∗

2
, α∗, α∗ × 2, ..., α∗ × (B − 1) /2

}
(5)

where α∗ is the default learning rate (for A2C, e.g. α∗ =
7 × 10−4). This is convenient for automatically generating
the bins for hyper-action space given B, which ensures that
there exists one action that correspond to the default hyper-
parameter.

One limitation of discretizing hyper-actions is the expo-
nential growth of the number of hyper-action w.r.t the size
of the optimized hyperparameter set. For example, if there
are ‖ψ‖ hyperparameters we want to optimize on-the-fly
and each is quantized into Bi discrete values, the number
of hyper-actions is

‖A‖ =

‖ψ‖∏
i

Bi

In this paper, our experiments scale up to ‖A‖ = 3× 3×
4× 4 = 144. Beyond this limit may require a different way
to model the hyper-action space (e.g. RL methods for con-
tinuous action space).

A.3 EPGT’s networks EPGT has trainable parameters,
which are Cnm, φ and ω. Here, Cnm is just a parametric 2d
tensor, φ and ω are neural networks, implemented as fol-
lows:
• Encoder network φ: 2-layer feed-forward neural network

with tanh activation with layer size: d→ d/4→ h× 2.
The output will be used as the mean and the standard
deviation of the normal distribution in VAE.

• Decoder network ω: 2-layer feed-forward neural network
with sigmoid activation with layer size: h→ d/4→ d

The number of parameters will increase as the PG networks
grow. For PPO as the most complicated example, EPGT’s
number of parameters is 5M.

To train the networks, we sample hyper-states in the buffer
D and minimize Lrec =

∥∥ω (φ (sψ))− sψ
∥∥2
2

using gradi-
ent decent and batch size of 8. Here, we stop the gradient
at the target sψ and only let the gradient backpropagated
via ω

(
φ
(
sψ
))

to learn ω,φ and {Cnm}
Norder,M
n=0,m=1 . In our ex-

periments, to save computing cost, we do not sample every
learning step. Instead, every 10 policy update steps, we sam-
ple data and perform a gradient decent step to minimizeLrec
once. Training, interestingly, is usually sample-efficient, es-
pecially when d is not big and PG networks are simple. Fig.
6 showcases the reconstruction loss Lrec in several envi-
ronments using PG A2C and PPO. For PG A2C, conver-
gence is quickly achieved since A2C’s network for Bipedal
Walker and HalfCheetah is simple. For PPO, the task is more
challenging and also the networks include CNN (in case of
Atari game Riverraid). Hence, the loss is minimized slower,
yet still showing good convergence. We note that the model
learn meaning representations and the mapping is not degen-
erated. According to Fig. 5, our learned mapping distributes
states to clusters, showing clear discrimination between sim-
ilar and dissimilar states (see more in Fig. 15).

B. Details of experiments
B.1 A summary of tasks and PG methods We use envi-
ronments from Open AI gyms 1, which are public and using
The MIT License. Mujoco environments use Mujoco soft-
ware2 (our license is academic lab). Table 3 lists all the en-
vironments.

All PG methods (A2C, ACKTR, PPO) use available pub-
lic code. They are Pytorch reimplementation of OpenAI’s
stable baselines3, which can reproduce the original perfor-
mance relatively well. The source code for baselines HOOF
and PB2 is adopted from the authors’ public code 4 and 5,
respectively. Table 4 summarizes the PG methods and their
networks.

1https://gym.openai.com/envs/#classic_control
2https://www.roboti.us/license.html
3https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail
4https://github.com/supratikp/HOOF
5https://github.com/jparkerholder/PB2
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Figure 6: Reconstruction loss training VAE in representative environments and PG methods. The curves are mean with std. over
5 runs.

Tasks Continuous Gym
action category

Mountain Car-v0 X Classical
Mountain Car Continuous-v0 � control

Bipedal Walker-v3
� Box2d

Lunar Lander Continuous-v2
MuJoCo tasks (v2): HalfCheetah

� MuJoCoWalker2d, Hopper, Ant
Swimmer, Humanoid,

Atari games (NoFramskip-v4):

X Atari
Beamrider, Breakout, Pong

Qbert, Seaquest, SpaceInvaders
Alien, MsPacman, Demonattack

Riverraid

Table 3: Tasks used in the paper.

PGs Policy/Value networks

A2C/ACKTR/PPO

Vector input: 2-layer feedforward
net (tanh, h=32)

Image input: 3-layer ReLU CNN with
kernels {32/8/4, 64/4/2, 32/3/1}+2-layer

feedforward net (ReLU, h=512)

Table 4: PG methods used in the paper.

B.2 Episodic memory configuration We implement the
memory using kd-tree structure, so neighbor lookup for
memory read and update is fast. To further reduce com-
putation complexity, we only update the memory after every
10 policy update steps. The memory itself has many hyper-
parameters. However, to keep our solution efficient, we keep
most of the hyperparameters unchanged across experiments
and do not tune them. In particular, the list of untuned hy-
perparameters is:

• Hyperparameters of the VAE (see A.3)
• State embedding size h = 32

• The writing rate β = 0.5

• Similarity kernel Sim (i, k) = 1

‖φ(sψk )−φ(sψi )‖+ε , ε =

0.001 following [31]
• ε in the ε-greedy is linearly reduced from 1.0 to 0 during

the training. At the final step of training, ε = 0.
• The memory size Nmem is always half of the number of

policy update steps for each task. This is determined by
our educated guess that after half of training time, the
initial learning experiences stored in the memory is not
relevant anymore and needed to be replace with newer
observations. The number of policy update steps can be
always computed given the allowed number of environ-
ment steps. For example, if we allow ne environment
steps for training, then the number of policy updates is
ne×U
T , and the memory size will be ne×U

20T (since we up-
date every 10 steps). Here, we assume each memory up-
date will add a new tuple to the memory since the chance
of exact key match is very small. For all of our tasks, the
maximum Nmem is up to 10,000.

• To hasten the training with EPGT, we utilize uniform
writing [20] to reduce the compute complexity of mem-
ory writing operator. In particular, we write observations
to the episodic memory every 10 update steps.

For other hyperparameters of EPGT, we tune or verify them
in Mountain Car or one Atari game and apply the found hy-
perparameter values to all other tasks. These hyperparame-
ters are:

• VAE or Random projection, verified in Mountain Car
• Order of representation Norder, tuned in MsPacman
• State size d, tuned in MsPacman



Model Speed (env. steps/s) Mem (Gb)
MCC BW MCC and BW

Default (A2C) 780 78 1.49
DQN (Hyper-RL) 590 35 1.59

EPGT 720 71 1.58

Table 5: Computing cost of different methods in Mountain-
CarContinuous (MCC) and BipedalWalker (BW).

• Neighbor size K, tuned in Demon Attack and Alien

The details of selecting values for these hyperparameters can
be found in ablation studies in this paper. We note that after
verifying reasonable values for these EPGT hyperparame-
ters in some environments, we keep using them across all
experiments, and thus do not requires additional tunning per
task.

B.3 Training description All the environments are
adopted from Open AI’s Gym (MIT license).

Mountain Car Continuous and Bipedal Walker with PG
A2C We use the A2C with default hyperparameters from
Open AI6. In these two tasks, we optimize the learning rate
α from the range defined by Eq. 5 using B = 15 and B = 5,
respectively. Here, U = 10. In this task, we implement 2 ad-
ditional baselines solving the Hyper-RL: DQN and Random
(RND) agent. Both DQN and RND uses the same hyper-
state (trained with VAE), action and reward representation
as EPGT. We note that these baselines are used to optimize
hyperparameters of the PG algorithm, not for solving the
main RL.

For RND, we uniformly sample the hyper-action at each
policy update step, which is equivalent to a random hyper-
agent. For DQN7, we also use ε-greedy is linearly reduced
from 1.0 to 0 during the training and the value and target
networks are 3-layer ReLU feedforward net with 64 hidden
units. DQN is trained with a replay buffer size of 1 million
and batch size of 32. The DQN’s networks are updated at ev-
ery policy update step and the target network is synced with
the value network every Tq policy update steps. We tune Tq
with difference values (5, 50, 500) for each task and report
the best performance.

To measure the computing efficiency, we compare the
running speed and memory usage of EPGT, DQN (Hyper-
RL) and the original A2C in Table 5. On our machines using
1 GPU Tesla V100-SXM2, in terms of speed, EPGT runs
slightly slower than A2C without any scheduler, yet much
faster than DQN. When the problem gets complicated as in
BW, EPGT is twice faster than DQN. In terms of memory,
all models consume similar amount of memory. EPGT is
slightly less RAM-consuming than DQN since the episodic
memory size is smaller than the number of parameters of the
DQN’s networks.

6https://stable-baselines.readthedocs.io/en/master/modules/
a2c.html

7Implementation from public source code https://github.com/
higgsfield/RL-Adventure

4 Mujoco tasks with PG A2C In this task, we follow
closely the training setting in [29] using the benchmark of
4 Mujoco tasks and optimizing learning rate α. The PG
method is A2C, trained on 5 million environment steps.
The configuration of A2C is similar to that of [29] (T =
5,RMSProb optimizer with initial learning rate of 7× 10−4,
value loss coefficient of 0.5, entropy loss coefficient of 0.01,
GAE λ = 0.95, γ = 0.99, etc. ). Here, U = 1. The learn-
ing rate α is optimized in the range defined by Eq. 5 using
B = 7.

Fig. 7 compares the learning curves of EPGT against
the baseline A2C with default hyperparameters. EPGT im-
proves A2C performance by a huge margin in HalfCheetah
and Walker2d. The other two tasks show smaller improve-
ment. We report EPGT’s numbers in Table 1 by using the
best checkpoint to measure average return over 100 episodes
for each run, then take average over 10 runs.

4 mixed tasks with PG PPO We use similar setting in-
troduced in [28] using 4 tasks: BipedalWalker, LunarLan-
derContinous, Hopper and InvertedDoublePendulum, each
is trained using 1 million environment steps. Here, 4 hy-
perparameters are optimized: learning rate α, batch size b,
GAE λ and PPO clip ε. The PG algorithm is PPO with
configuration: T = 1600, number of gradient updates=10,
num workers=4, Adam optimizer with initial learning rate
of 3 × 10−4 and γ = 0.99 . Here, Tu = 10 × 4 × 1600/b
where b is the batch size. The range of optimized hyper-
parameters: b {128, 256, 512}, λ {0.9, 0.95, 0.975, 0.99}, ε
{0.1, 0.2, 0.3, , 0.5}, α using Eq. 5 with B = 3.

Fig. 8 compares the learning curves of EPGT against the
baseline PPO with default hyperparameters. EPGT shows
clear improvement in LunarLanderContinous and Hopper.
We report EPGT’s numbers in Table 2 by using the best
checkpoint to measure average return over 100 episodes for
each run, then take median over 10 runs.

Atari tasks with ACKTR We adopt ACKTR as PG
method with default hyperparameters [39]: number of work-
ers=40, initial η = 0.25, GAE λ = 0.95, γ = 0.99, T = 20
and U = 10. The full set of tuned hyperparameters is trust
region radius δ {0.001, 0.002, 0.003}, the value loss coef-
ficient lv{0.25, 0.5, 1.0} and step size η using Eq. 5 with
B = 3.

Fig. 10 compares the learning curves of EPGT with differ-
ent optimized hyperparameter set against the best ACKTR.
The best ACKTR is found by grid-search (δ {0.001, 0.003},
lv{0.5, 1.0}, η {0.2, 0.07}) on Breakout. EPGT shows clear
improvement in BeamRider, Qbert and SpaceInvaders.

Atari tasks with PPO We adopt PPO as PG method with
default hyperparameters [33]: T = 2048, number of gra-
dient updates=10, num workers=1, Adam optimizer with
initial learning rate of 3 × 10−4 and γ = 0.99 . Here,
U = 10 × 4 × 2048/b where b is the batch size. The
range of optimized hyperparameters: b {128, 256, 512}, λ
{0.9, 0.95, 0.975, 0.99}, ε {0.1, 0.2, 0.3, 0.5}, α using Eq. 5
with B = 3.

Fig. 11 compares the learning curves of EPGT with dif-
ferent optimized hyperparameter set against the best PPO.
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Figure 7: 4 Mujoco tasks: Average return over environmental steps across 10 training seeds using PG A2C.
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The best PPO is found by grid-search (b {128, 256}, λ
{0.95, 0.99}, ε {0.1, 0.2}, α

{
7× 10−4, 10−5

}
) on Break-

out. EPGT shows clear improvement in Breakout, Qbert,
Seaquest and SpaceInvaders.

We note that we only perform grid-search on smaller hy-
perparameter value sets since grid-search is very expensive.
EPGT only needs one run with similar training time as the
original PG methods to achieve significantly better results
than the best PG methods found after 16 runs of grid-search.

6 Mujoco tasks with PPO We adopt PPO as PG method
with default hyperparameters [33]: number of workers=1,
T = 2048, γ = 0.99, and Adam optimizer with initial
learning rate of 3 × 10−4. Here, U = 10 × 1 × 2048/b.
The full set of tuned hyperparameters is b {128, 256, 512},
λ {0.95, 0.975, 0.99}, ε {0.1, 0.2, 0.3}, α using Eq. 5 with
B = 3.

Fig. 12 compares the learning curves of EPGT against the
baseline default PPO and Random (RND) hyperparameter
selection. EPGT shows clear improvement in HalfCheetah,
Hopper, Walker2d and Humanoid.

B.4 Details of ablation studies

Hyper-state size Each tensor Wn
m will be projected to a

vector sized d′ × d where d′ is the first dimension of Wn
m

and d the last dimension of the mapping Cnm. If the PG
models has M layers and we maintain Norder orders of
representations, the hyper-state vector’s size, in general, is
M ×Norder × d′× d. We already ablate Norder in the main
manuscript,M and d′ are fixed for each PG method, now we
examine d.

Fig. 13 reports the ablation results. The common behav-
ior is the performance improves whenNorder and d increase
to Norder = 2 and d = 4, which corresponds to 8K-
dimensional hyper-state vector in this experiment. When
Norder = 0, no derivative is used to represent the hyper-
state, which leads to lower performance. When eitherNorder
or d keeps growing, state vector size will be 16K, which is
too big for the episodic control method to work properly.
For example, VAE almost cannot learn to minimize the re-
construction loss for Norder = 2 and d = 8 as shown in Fig.
13 (right).

Neighbor size K We also test our model with different
number of neighbors K for both reading and writing. We
use Atari game Demon Attack as an illustration and realize
thatK = 3 is the best value (Fig. 14 (a)). More neighbors do
not help because perhaps the cluster size of the similar-value
representations is not big and thus, referring to far neighbors
is not reliable.

Average vs Max writing rule Traditional episodic con-
trols [3] use max-rule as

M
(
φ
(
sψ
)
, aψi

)
← max

(
M
(
φ
(
sψ
)
, aψi

)
, Gψi

)
That stores the best experience the agent has so far and
quickly guides next actions toward the best experience.
However, this works only for near-deterministic environ-
ments as when G

ψ
i is unexpectedly high due to stochastic

transition, a bad action is misunderstood as good one. This
false belief may never be updated. Our Hyper-RL is not
near-deterministic as the hyper-reward is basically MCMC
estimation of the environment returns and the state is par-
tially observable. Another problem of the max rule is it re-
quires exact match to facilitate an update, which is rare in
practice.

We address theses issue by taking weighted average and
employing neighbor writing as in Eq. 4. As we write to mul-
tiple memory slots, it does not require exact match and en-
ables fast value propagation inside the memory. Fig. 14 (b)
shows the performance increase using the average compared
to max rule in Atari Riverraid game.

C. Theoretical analysis of our writing rule
In this section, we show that using our writing, the value
stored in the episodic memory is an approximation of the
expected return (our writing is generic and can be used for
general RL, hence we exclude “hyper-” in this section). The
proof is based on [19]. In particular, we can always find β
such that the writing converges with probability 1 and we
also analyze the convergence as β is constant, which is prac-
tically used in this paper.

To simplify the notation, we rewrite Eq. 4 as

Mi (n+ 1) = Mi (n) + λ (n) (Gj (n)− Mi (n)) (6)

where i and j denote the current memory slot being updated
and its neighbor that initiates the writing, respectively (it is
opposite to the indices in Eq. 4). Here, the action is the same
for both i and j slots, so we exclude action to simplify the
notation. λ (n) = β(n) Sim(i,j)∑|N(j)|

b=1 Sbj
where N (j) is the set

of K neighbors of j slot. Gj is the return of the state-action
whose key is the memory slot j, Sim (j, i) the kernel func-
tion of 2 keys and n the number of memory updates. This
stochastic approximation converges when

∑∞
n=1 λ (n) =∞

and
∑∞
n=1 λ

2 (n) <∞.
By definition, Sim (i, j) = 1

‖φ(sψi )−φ(sψj )‖+ε and

φ
(
sψ
)
≤ 1 since we use tanh activation in φ. Hence, we

have ∀i, j: 0 < 1
2+ε ≤ Sim (i, j) ≤ 1

ε . Hence, let Bij (n)

a random variable denoting Sim(i,j)∑|N(j)|
b=1 Sbj

–the neighbor weight

at step n, ∀i, j :

ε

Kε+ 2K − 2
≤ Bij (n) ≤ 2 + ε

Kε+ 2

That yields
∑∞
n=1 λ (n) ≥ ε

Kε+2K−2
∑∞
n=1 β (n) and∑∞

n=1 λ
2 (n) ≤

(
2+ε
Kε+2

)2∑∞
n=1 β

2 (n). Hence the writ-

ing updates converge when
∑∞
n=1 β (n) = ∞ and∑∞

n=1 β
2 (n) < ∞. We can always choose such β (e.g.,

β (n) = 1
n+1 ).

With a constant writing rate β (β = 1/2), we rewrite Eq.
6 as
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Figure 11: Atari games: Average return over environment steps across 5 training seeds using PG PPO.
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Figure 12: Mujoco: Average return over environment steps across 10 training seeds using PG PPO.
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Mi (n+ 1) = Mi (n) + βBij (n) (Gj (n)− Mi (n))

= βBij (n) Gj (n) + Mi (n) (1− βBij (n))

=

n∑
t=1

βBij (t)

n∏
l=t+1

(1− βBij (l)) Gj (t)

+

n∏
t=1

(1− βBij (t)) Mi (1)

where the second term
∏n
t=1 (1− βBij (t)) Mi (1) → 0 as

n → ∞ since Bij (t) and β are bounded between 0 and 1.
The first term can be decomposed into three terms

n∑
t=1

βBij (t)

n∏
l=t+1

(1− βBij (l)) Gj (t) = T1 + T2 + T3

where

T1 =

n∑
t=1

βBij (t)

n∏
l=t+1

(1− βBij (l))Qi

T2 =

n∑
t=1

βBij (t)

n∏
l=t+1

(1− βBij (l)) ∆Qij (t)

T3 =

n∑
t=1

βBij (t)

n∏
l=t+1

(1− βBij (l)) Ĝj (t)

Here,Qi is the true action value of the state-action stored
in slot i, ∆Qij (t) = Qj (t) − Qi and Ĝj (t) = Gj (t) −
Qj (t) the noise term between the return and the true action
value. Assume that the action value is associated with zero
mean noise and the action value noise is independent with
the neighbor weights, then E (T3) = 0.

Further, we make other two assumptions: (1) the neigh-
bor weights are independent across update steps; (2) the

probability pj of visiting a neighbor j follows the same
distribution across update steps and thus, E (Bij (t)) =
E (Bij (l)) = E (Bij). We now can compute

E (T1) = E

(
n∑
t=1

βBij (t)

n∏
l=t+1

(1− βBij (l))Qi

)

= Qi

n∑
t=1

βE (Bij)

n∏
l=t+1

(1− αE (Bij))

= QiβE (Bij)

n∑
t=1

(1− βE (Bij))
n−t

= QiβE (Bij)
1− (1− βE (Bij))

n

1− (1− βE (Bij))

= Qi (1− (1− βE (Bij))
n
)

As n → ∞, E (T1) → Qi since since Bij (t) and α are
bounded between 0 and 1.

Similarly, E (T3) = E (Qj (t)−Qi) = E (Qj (t)) −
Qi =

∑|N (i)|
j=1 pjQj − Qi, which is the approximation er-

ror of the KNN algorithm. Hence, with constant learning
rate, on average, the update operator leads to the true ac-
tion value (the expected return) plus the approximation er-
ror of KNN. The quality of KNN approximation determines
the mean convergence of update operator. Since the bias-
variance trade-off of KNN is specified by the number of
neighbors K, choosing the right K > 1 (not too big, not
too small) is important to achieve good writing to ensure
fast convergence. That explains why our writing to multiple
slots (K > 1) is generally better than the traditional writing
to single slot (K = 1).



Figure 15: Hyper-state representations stored in memory for BipedalWalker, HalfCheetah, Ant, Riverraid tasks (from left to
right) at 1000 update steps.


