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Abstract

Memory-augmented neural networks consisting of a neural controller and
an external memory have shown potentials in long-term sequential learn-
ing. Current RAM-like memory models maintain memory accessing every
timesteps, thus they do not effectively leverage the short-term memory held
in the controller. We hypothesize that this scheme of writing is suboptimal
in memory utilization and introduces redundant computation. To validate
our hypothesis, we derive a theoretical bound on the amount of informa-
tion stored in a RAM-like system and formulate an optimization problem
that maximizes the bound. The proposed solution dubbed Uniform Writing
is proved to be optimal under the assumption of equal timestep contribu-
tions. To relax this assumption, we introduce modifications to the original
solution, resulting in a solution termed Cached Uniform Writing. This
method aims to balance between maximizing memorization and forgetting
via overwriting mechanisms. Through an extensive set of experiments, we
empirically demonstrate the advantages of our solutions over other recurrent
architectures, claiming the state-of-the-arts in various sequential modeling
tasks.

1 Introduction

A core task in sequence learning is to capture long-term dependencies amongst timesteps
which demands memorization of distant inputs. In recurrent neural networks (RNNs), the
memorization is implicitly executed via integrating the input history into the state of the
networks. However, learning vanilla RNNs over long distance proves to be difficult due to
the vanishing gradient problem (Bengio et al., 1994; Pascanu et al., 2013). One alleviation is
to introduce skip-connections along the execution path, in the forms of dilated layers (Van
Den Oord et al., 2016; Chang et al., 2017), attention mechanisms (Bahdanau et al., 2015;
Vaswani et al., 2017) and external memory (Graves et al., 2014; 2016).

Amongst all, using external memory most resembles human cognitive architecture where
we perceive the world sequentially and make decision by consulting our memory. Recent
attempts have simulated this process by using RAM-like memory architectures that store
information into memory slots. Reading and writing are governed by neural controllers
using attention mechanisms. These memory-augmented neural networks (MANN) have
demonstrated superior performance over recurrent networks in various synthetic experiments
(Graves et al., 2016) and realistic applications (Le et al., 2018a;b; Franke et al., 2018).

Despite the promising empirical results, there is no theoretical analysis or clear understand-
ing on optimal operations that a memory should have to maximize its performance. To the
best of our knowledge, no solution has been proposed to help MANNs handle ultra-long
sequences given limited memory. This scenario is practical because (i) sequences in the
real-world can be very long while the computer resources are limited and (ii) it reflects the
ability to compress in human brain to perform life-long learning. Previous attempts such as
(Rae et al., 2016) try to learn ultra-long sequences by expanding the memory, which is not
always feasible and do not aim to optimize the memory by some theoretical criterion. This
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paper presents a new approach towards finding optimal operations for MANNs that serve
the purpose of learning longer sequences with finite memory.

More specifically, upon analyzing RNN and MANN operations we first introduce a mea-
surement on the amount of information that a MANN holds after encoding a sequence.
This metric reflects the quality of memorization under the assumption that contributions
from timesteps are equally important. We then derive a generic solution to optimize the
measurement. We term this optimal solution as Uniform Writing (UW), and it is appli-
cable for any MANN due to its generality. Crucially, UW helps reduce significantly the
computation time of MANN. Third, to relax the assumption and enable the method to
work in realistic settings, we further propose Cached Uniform Writing (CUW) as an im-
provement over the Uniform Writing scheme. By combining uniform writing with local
attention, CUW can learn to discriminate timesteps while maximizing local memorization.
Finally we demonstrate that our proposed models outperform several MANNs and other
state-of-the-art methods in various synthetic and practical sequence modeling tasks.

2 Methods

2.1 Theoretical Analysis

Memory-augmented neural networks can be viewed as an extension of RNNs with external
memory M . The memory supports read and write operations based on the output ot of the
controller, which in turn is a function of current timestep input xt, previous hidden state
ht−1 and read value rt−1 from the memory. Let assume we are given these operators from
recent MANNs such as NTM (Graves et al., 2014) or DNC (Graves et al., 2016), represented
as:

rt = fr (ot,Mt−1) (1) Mt = fw (ot,Mt−1) (2)

The controller output and hidden state are updated as follows:

ot = fo (ht−1, rt−1, xt) (3) ht = fh (ht−1, rt−1, xt) (4)

Here, fo and fh are often implemented as RNNs while fr and fw are designed specifically
for different memory types.

Current MANNs only support regular writing by applying Eq. (2) every timestep. In effect,
regular writing ignores the accumulated short-term memory stored in the controller hidden
states which may well-capture the recent subsequence. We argue that the controller does
not need to write to memory continuously as its hidden state also supports memorizing.
Another problem of regular writing is time complexity. As the memory access is very
expensive, reading/writing at every timestep makes MANNs much slower than RNNs. This
motivates a irregular writing strategy to utilize the memorization capacity of the controller
and consequently, speed up the model. In the next sections, we first define a metric to
measure the memorization performance of RNNs, as well as MANNs. Then, we solve the
problem of finding the best irregular writing that optimizes the metric.

2.1.1 Memory analysis of RNNs

We first define the ability to “remember” of recurrent neural networks, which is closely
related to the vanishing/exploding gradient problem (Pascanu et al., 2013). In RNNs, the
state transition ht = φ (ht−1, xt) contains contributions from not only xt, but also previous
timesteps xi<t embedded in ht−1. Thus, ht can be considered as a function of timestep
inputs, i.e, ht = f (x1, x2, ..., xt). One way to measure how much an input xi contributes to

the value of ht is to calculate the norm of the gradient
∥∥∥∂ht

∂xi

∥∥∥. If the norm equals zero, ht

is constant w.r.t xi, that is, ht does not “remember” xi. As a bigger
∥∥∥∂ht

∂xi

∥∥∥ implies more

influence of xi on ht, we propose using
∥∥∥∂ht

∂xi

∥∥∥ to measure the contribution of the i-th input
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attention

Figure 1: Writing mechanism in Cached Uniform Writing. During non-writing intervals,
the controller hidden states are pushed into the cache. When the writing time comes, the
controller attends to the cache, chooses suitable states and accesses the memory. The cache
is then emptied.

to the t-th hidden state. Let ci,t denotes this term, we can show that in the case of common
RNNs, λcci,t ≥ ci−1,t with some λc ∈ R+(see Appendix A - C for proof). This means further
to the past, the contribution decays (when λc < 1) or grows (when λc > 1) with the rate
of at least λc .We can measure the average amount of contributions across T timesteps as
follows (see Appendix D for proof):

Theorem 1. There exists λ ∈ R+such that the average contribution of a sequence of length
T with respect to a RNN can be quantified as the following:

Iλ =

T∑
t=1

ct,T

T
= cT,T

T∑
t=1

λT−t

T
(5)

If λ < 1, λT−t → 0 as T − t → ∞. This is closely related to vanishing gradient problem.
LSTM is known to “remember” long sequences better than RNN by using extra memory
gating mechanisms, which help λ to get closer to 1. If λ > 1, the system may be unstable
and suffer from the exploding gradient problem.

2.1.2 Memory analysis of MANNs

In slot-based MANNs, memory M is a set of D memory slots. A write at step t can
be represented by the controller’s hidden state ht, which accumulates inputs over several
timesteps (i.e., x1, ...,xt). If another write happens at step t+k, the state ht+k’s information
containing timesteps xt+1, ...,xt+k is stored in the memory (ht+k may involves timesteps
further to the past, yet they are already stored in the previous write and can be ignored).
During writing, overwriting may happen, replacing an old write with a new one. Thus
after all, D memory slots associate with D chosen writes of the controller. From these
observations, we can generalize Theorem 1 to the case of MANNs having D memory slots
(see Appendix E for proof).

Theorem 2. With any D chosen writes at timesteps 1 ≤K1< K2< ...<KD< T , there exist
λ,C ∈ R+such that the lower bound on the average contribution of a sequence of length T
with respect to a MANN having D memory slots can be quantified as the following:
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Algorithm 1 Cached Uniform Writing

Require: a sequence x = {xt}Tt=1, a cache C sized L, a memory sized D.
1: for t = 1, T do
2: C.append(ht−1)
3: if t mod L == 0 then
4: Use Eq.(10) to calculate at
5: Execute Eq.(3): ot = fo (at, rt−1, xt)
6: Execute Eq.(4): ht = fh (at, rt−1, xt)
7: Update the memory using Eq.(2)
8: Read rt from the memory using Eq.(1)
9: C.clear()

10: else
11: Update the controller using Eq.(4): ht = fh (ht−1, rt−1, xt)
12: Assign rt = rt−1
13: end if
14: end for

Iλ = C

K1∑
t=1

λK1−t+
K2∑

t=K1+1

λK2−t + ...+
KD∑

t=KD−1+1

λKD−t+
T∑

t=KD+1

λT−t

T

=
C

T

D+1∑
i=1

li−1∑
j=0

λj =
C

T

D+1∑
i=1

fλ(li) (6)

where li =


K1 ; i = 1

Ki −Ki−1 ;D ≥ i > 1

T −KD ; i = D + 1

, fλ (x) =

{
1−λx

1−λ λ 6= 1

x λ = 1
, ∀x ∈ R+.

If λ ≤ 1, we want to maximize Iλ to keep the information from vanishing. On the contrary, if
λ > 1, we may want to minimize Iλ to prevent the information explosion. As both scenarios
share the same solution (see Appendix F), thereafter we assume that λ ≤ 1 holds for other
analyses. By taking average over T , we are making an assumption that all timesteps are
equally important. This helps simplify the measurement as Iλ is independent of the specific
position of writing. Rather, it is a function of the interval lengths between the writes. This
turns out to be an optimization problem whose solution is stated in the following theorem.

Theorem 3. Given D memory slots, a sequence with length T , a decay rate 0 < λ ≤ 1,

then the optimal intervals {li ∈ R+}D+1
i=1 satisfying T =

D+1∑
i=1

li such that the lower bound on

the average contribution Iλ = C
T

D+1∑
i=1

fλ(li) is maximized are the following:

l1 = l2 = ... = lD+1 =
T

D + 1
(7)

We name the optimal solution as Uniform Writing (UW) and refer to the term T
D+1 and

D+1
T as the optimal interval and the compression ratio, respectively. The proof is given in

Appendix F.

2.2 Proposed Models

Uniform writing can apply to any MANNs that support writing operations. Since the writing
intervals are discrete, i.e., li ∈ N+, UW is implemented as the following:
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Mt =

{
fw (ot,Mt−1) if t =

⌊
T

D+1

⌋
k, k ∈ N+

Mt−1 otherwise
(8)

By following Eq. (8), the write intervals are close to the optimal interval defined in Theorem
3 and approximately maximize the average contribution. This writing policy works well if
timesteps are equally important and the task is to remember all of them to produce outputs
(i.e., in copy task). However, in reality, timesteps are not created equal and a good model
may need to ignore unimportant or noisy timesteps. That is why overwriting in MANN
can be necessary. In the next section, we propose a method that tries to balance between
following the optimal strategy and employing overwriting mechanism as in current MANNs.

2.2.1 Local optimal design

To relax the assumptions of Theorem 3, we propose two improvements of the Uniform
Writing (UW) strategy. First, the intervals between writes are equal with length L (1 ≤
L ≤

⌊
T

D+1

⌋
). If L = 1, the strategy becomes regular writing and if L =

⌊
T

D+1

⌋
, it becomes

uniform writing. This ensures that after
⌊
T
L

⌋
writes, all memory slots should be filled and

the model has to learn to overwrite. Meanwhile, the average kept information is still locally
maximized every L ∗D timesteps.

Second, we introduce a cache of size L to store the hidden states of the controller during
a write interval. Instead of using the hidden state at the writing timestep to update the
memory, we perform an attention over the cache to choose the best representative hidden
state. The model will learn to assign attention weights to the elements in the cache. This
mechanism helps the model consider the importance of each timestep input in the local
interval and thus relax the equal contribution assumption of Theorem 3. We name the writ-
ing strategy that uses the two mentioned-above improvements as Cached Uniform Writing
(CUW). An illustration of the writing mechanism is depicted in Fig. 1.

2.2.2 Local memory-augmented attention unit

In this subsection, we provide details of the attention mechanism used in our CUW. To be
specific, the best representative hidden state at is computed as follows:

αtj = softmax
(
vT tanh (Wht−1 + Udj + V rt−1)

)
(9) at =

L∑
j=1

αtjdj (10)

where αtj is the attention score between the t-th writing step and the j-th element in the
cache; W , U , V and v are parameters; h and r are the hidden state of the controller and
the read-out (Eq. (1)), respectively; dj is the cache element and can be implemented as the
controller’s hidden state (dj = ht−1−L+j).

The vector at will be used to replace the previous hidden state in updating the controller
and memory. The whole process of performing CUW is summarized in Algo. 1.

3 Results

3.1 An Ablation Study: Memory-augmented Neural Networks with and
without Uniform Writing

In this section, we study the impact of uniform writing on MANNs under various circum-
stances (different controller types, memory types and number of memory slots). We restrict
the memorization problem to the double task in which the models must reconstruct a se-
quence of integers sampled uniformly from range [1, 10] twice. We cast this problem to a
sequence to sequence problem with 10 possible outputs per decoding step. The training
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Figure 2: The accuracy (%) and computation time reduction (%) with different memory
types and number of memory slots. The controllers/sequence lengths/memory sizes are
chosen as LSTM/50/{2, 4, 9, 24} (a&b) and RNN/30/{2, 4, 9, 14} (c&d), respectively.

stops after 10,000 iterations of batch size 64. We choose DNC1 and NTM2 as the two
MANNs in the experiment. The recurrent controllers can be RNN or LSTM. With LSTM
controller, the sequence length is set to 50. We choose sequence length of 30 to make it
easier for the RNN controller to learn the task. The number of memory slots D is chosen
from the set {2, 4, 9, 24} and {2, 4, 9, 14} for LSTM and RNN controllers, respectively. More
memory slots will make UW equivalent to the regular writing scheme. For this experiment,
we use Adam optimizer (Kingma & Ba, 2014) with initial learning rate and gradient clipping
of {0.001, 0.0001} and {1, 5, 10}, respectively. The metric used to measure the performance
is the average accuracy across decoding steps. For each configuration of hyper-parameters,
we run the experiment 5 times and report the mean accuracy with error bars.

Figs. 2(a) and (c) depict the performance of UW and regular writing under different con-
figurations. In any case, UW boosts the prediction accuracy of MANNs. The performance
gain can be seen clearly when the compression ratio is between 10− 40%. This is expected
since when the compression ratio is too small or too big, UW converges to regular writing.
Interestingly, increasing the memory size does not always improve the performance, as in
the case of NTM with RNN controllers. Perhaps, learning to attend to many memory slots
is tricky for some task given limited amount of training data. This supports the need to
apply UW to MANN with moderate memory size. We also conduct experiments to verify
the benefit of using UW for bigger memory. The results can be found in Appendix H.

We also measure the speed-up of training time when applying UW on DNC and NTM,
which is illustrated in Figs. 2(b) and (d). The result shows that with UW, the training time
can drop up to 60% for DNC and 28% for NTM, respectively. As DNC is more complicated
than NTM, using UW to reduce memory access demonstrates clearer speed-up in training
(similar behavior can be found for testing time).

3.2 Synthetic Memorization

Here we address a broader range of baselines on two synthetic memorization tasks, which
are the sequence copy and reverse. In these tasks, there is no discrimination amongst
timesteps so the model’s goal is to learn to compress the input efficiently for later retrieval.
We experiment with different sequence lengths of 50 and 100 timesteps. Other details are
the same as the previous double task except that we fix the learning rate and gradient
clipping to 0.001 and 10, respectively. The standard baselines include LSTM, NTM and
DNC. All memory-augmented models have the same memory size of 4 slots, corresponding
to compression ratio of 10% and 5%, respectively. We aim at this range of compression ratio
to match harsh practical requirements. UW and CUW (cache size L = 5) are built upon the
DNC, which from our previous observations, works best for given compression ratios. We
choose different dimensions Nh for the hidden vector of the controllers to ensure the model

1Our reimplementation based on https://github.com/deepmind/dnc
2https://github.com/MarkPKCollier/NeuralTuringMachine
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Model Nh # parameter
Copy Reverse

L=50 L=100 L=50 L=100

LSTM 125 103,840 15.6 12.7 49.6 26,1
NTM 100 99,112 40.1 11.8 61.1 20.3
DNC 100 98,840 68.0 44.2 65.0 54.1

DNC+RW 100 98,840 47.6 37.0 70.8 50.1

DNC+UW 100 98,840 97.7 69.3 100 79.5
DNC+CUW 95 96,120 83.8 55.7 93.3 55.4

Table 1: Test accuracy (%) on synthetic memorization tasks. MANNs have 4 memory slots.

sizes are approximately equivalent. To further verify that our UW is actually the optimal
writing strategy, we design a new baseline, which is DNC with random irregular writing
strategy (RW). The write is sampled from a binomial distribution with p = (D + 1) /T
(equivalent to compression ratio). After sampling, we conduct the training for that policy.
The final performances of RW are taken average from 3 different random policies’ results.

The performance of the models is listed in Table 1. As clearly seen, UW is the best performer
for the pure memorization tests. This is expected from the theory as all timesteps are
importantly equivalent. Local attention mechanism in CUW does not help much in this
scenario and thus CUW finishes the task as the runner-up. Reverse seems to be easier than
copy as the models tend to “remember” more the last-seen timesteps whose contributions
λT−t remains significant. In both cases, other baselines including random irregular and
regular writing underperform our proposed models by a huge margin.

3.3 Synthetic Reasoning

Tasks in the real world rarely involve just memorization. Rather, they require the ability to
selectively remember the input data and synthesize intermediate computations. To inves-
tigate whether our proposed writing schemes help the memory-augmented models handle
these challenges, we conduct synthetic reasoning experiments which include add and max
tasks. In these tasks, each number in the output sequence is the sum or the maximum of

two numbers in the input sequence. The pairing is fixed as: yt = xt+xT−t

2 , t = 1,
⌊
T
2

⌋
for

add task and yt = max (x2t, x2t+1) , t = 1,
⌊
T
2

⌋
for max task, respectively. The length of

the output sequence is thus half of the input sequence. A brief overview of input/output
format for these tasks can be found in Appendix G. We deliberately use local (max) and
distant (add) pairing rules to test the model under different reasoning strategies. The same
experimental setting as in the previous section is applied except for the data sample range
for the max task, which is [1, 50]3. LSTM and NTM are excluded from the baselines as they
fail on these tasks.

Table 2 shows the testing results for the reasoning tasks. Since the memory size is small
compared to the number of events, regular writing or random irregular writing cannot
compete with the uniform-based writing policies. Amongst all baselines, CUW demonstrates
superior performance in both tasks thanks to its local attention mechanism. It should be
noted that the timesteps should not be treated equally in these reasoning tasks. The model
should weight a timestep differently based on either its content (max task) or location (add
task) and maintain its memory for a long time by following uniform criteria. CUW is
designed to balance the two approaches and thus it achieves better performance. Further
insights into memory operations of these models are given in Appendix I.

3.4 Synthetic Sinusoidal Regression

In real-world settings, sometimes a long sequence can be captured and fully reconstructed by
memorizing some of its feature points. For examples, a periodic function such as sinusoid
can be well-captured if we remember the peaks of the signal. By observing the peaks,

3With small range like [1, 10], there is no much difference in performance amongst models
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Model
Add Max

L=50 L=100 L=50 L=100

DNC 83.8 22.3 59.5 27.4
DNC+RW 83.0 22.7 59.7 36.5

DNC+UW 84.8 50.9 71.7 66.2
DNC+CUW 94.4 60.1 82.3 70.7

Table 2: Test accuracy (%) on synthetic reasoning tasks. MANNs have 4 memory slots.

Figure 3: Learning curves of models in clean (a) and noisy (b) sinusoid regression experi-
ment.

we can deduce the frequency, amplitude, phase and thus fully reconstructing the function.
To demonstrate that UW and CUW are useful for such scenarios, we design a sequential
continuation task, in which the input is a sequence of sampling points across some sinusoid:
y = 5+A sin(2πfx+ϕ). Here, A ∼ U (1, 5), f ∼ U (10, 30) and ϕ ∼ U (0, 100). After reading

the input y = {yt}Tt=1, the model have to generate a sequence of the following points in the
sinusoid. To ensure the sequence y varies and covers at least one period of the sinusoid, we

set x = {xt}Tt=1 where xi = (t+ ε1) /1000, ε1 ∼ U (−1, 1). The sequence length for both
input and output is fixed to T = 100. The experimental models are LSTM, DNC, UW and
CUW (built upon DNC). For each model, optimal hyperparameters including learning rate
and clipping size are tuned with 10,000 generated sinusoids. The memories have 4 slots and
all baselines have similar parameter size. We also conduct the experiment with noisy inputs
by adding a noise ε2 ∼ U (−2, 2) to the input sequence y. This increases the difficulty of the
task. The loss is the average of mean square error (MSE) over decoding timesteps.

We plot the mean learning curves with error bars over 5 runnings for sinusoidal regression
task under clean and noisy condition in Figs. 3(a) and (b), respectively. Regular writing
DNC learns fast at the beginning, yet soon saturates and approaches the performance of
LSTM (MSE = 1.05 and 1.39 in clean and noisy condition, respectively). DNC performance
does not improve much as we increase the memory size to 50, which implies the difficulty
in learning with big memory. Although UW starts slower, it ends up with lower errors
than DNC and perform slightly better than CUW in clean condition (MSE = 0.44 for UW
and 0.61 for CUW). CUW demonstrates competitive performance against other baselines,
approaching to better solution than UW for noisy task where the model should discriminate
the timesteps (MSE = 0.98 for UW and 0.55 for CUW). More visualizations can be found
in Appendix J.

3.5 Flatten Image Recognition

We want to compare our proposed models with DNC and other methods designed to help
recurrent networks learn longer sequence. The chosen benchmark is a pixel-by-pixel image
classification task on MNIST in which pixels of each image are fed into a recurrent model
sequentially before a prediction is made. In this task, the sequence length is fixed to 768
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Model MNIST pMNIST

iRNN† 97.0 82.0
uRNN◦ 95.1 91.4
r-LSTM Full BP? 98.4 95.2
Dilated-RNN� 95.5 96.1
Dilated-GRU� 99.2 94.6
DNC 98.1 94.0

DNC+UW 98.6 95.6
DNC+CUW 99.1 96.3

Table 3: Test accuracy (%) on MNIST, pMNIST. Previously reported results are from (Le
et al., 2015)†, (Arjovsky et al., 2016)◦, (Trinh et al., 2018)?, and (Chang et al., 2017)�.

with highly redundant timesteps (black pixels). The training, validation and testing sizes
are 50,000, 10,000 and 10,000, respectively. We test our models on both versions of non-
permutation (MNIST) and permutation (pMNIST). More details on the task and data can
be found in (Le et al., 2015). For DNC, we try with several memory slots from {15, 30, 60}
and report the best results. For UW and CUW, memory size is fixed to 15 and cache size
L is set to 10. The controllers are implemented as single layer GRU with 100-dimensional
hidden vector. To optimize the models, we use RMSprop with initial learning rate of 0.0001.

Table 3 shows that DNC underperforms r-LSTM, which indicates that regular DNC with
big memory finds it hard to beat LSTM-based methods. After applying UW, the results
get better and with CUW, it shows significant improvement over r-LSTM and demonstrates
competitive performance against dilated-RNNs models. Notably, dilated-RNNs use 9 layers
in their experiments compared to our singer layer controller. Furthermore, our models
exhibit more consistent performance than dilated-RNNs. For completeness, we include
comparisons between CUW and non-recurrent methods in Appendix K

3.6 Document Classification

To verify our proposed models in real-world applications, we conduct experiments on docu-
ment classification task. In the task, the input is a sequence of words and the output is the
classification label. Following common practices in (Yogatama et al., 2017; Seo et al., 2018),
each word in the document is embedded into a 300-dimensional vector using Glove embed-
ding (Pennington et al., 2014). We use RMSprop for optimization, with initial learning rate
of 0.0001. Early-stop training is applied if there is no improvement after 5 epochs in the
validation set. Our UW and CUW are built upon DNC with single layer 512-dimensional
LSTM controller and the memory size is chosen in accordance with the average length of the
document, which ensures 10 − 20% compression ratio. The cache size for CUW is fixed to
10. The datasets used in this experiment are common big datasets where the number of doc-
uments is between 120,000 and 1,400,000 with maximum of 4,392 words per document (see
Appendix L for further details). The baselines are recent state-of-the-arts in the domain,
some of which are based on recurrent networks such as D-LSTM (Yogatama et al., 2017)
and Skim-LSTM (Seo et al., 2018). We exclude DNC from the baselines as it is inefficient
to train the model with big document datasets.

Our results are reported in Table 4. On five datasets out of six, our models beat or match
the best published results. For IMDb dataset, our methods outperform the best recurrent
model (Skim-LSTM). The performance gain is competitive against that of the state-of-the-
arts. In most cases, CUW is better than UW, which emphasizes the importance of relaxing
the timestep equality assumption in practical situations. Details results across different runs
for our methods are listed in Appendix M.

4Methods that use semi-supervised training to achieve higher accuracy are not listed.
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Model AG IMDb4 Yelp P. Yelp F. DBP Yah. A.

VDCNN• 91.3 - 95.7 64.7 98.7 73.4
D-LSTM∗ - - 92.6 59.6 98.7 73.7
Standard LSTM‡ 93.5 91.1 - - - -
Skim-LSTM‡ 93.6 91.2 - - - -
Region EmbeddingN 92.8 - 96.4 64.9 98.9 73.7

DNC+UW 93.7 91.4 96.4 65.3 99.0 74.2
DNC+CUW 93.9 91.3 96.4 65.6 99.0 74.3

Table 4: Document classification accuracy (%) on several datasets. Previously reported
results are from (Conneau et al., 2016)•, (Yogatama et al., 2017)∗, (Seo et al., 2018)‡ and
(Qui et al., 2018)N. We use italics to denote the best published and bold the best records.

4 Related Work

Traditional recurrent models such as RNN/LSTM (Elman, 1990; Hochreiter & Schmidhuber,
1997) exhibit some weakness that prevent them from learning really long sequences. The
reason is mainly due to the vanishing gradient problem (Pascanu et al., 2013) or to be more
specific, the exponential decay of input value over time. One way to overcome this problem
is enforcing the exponential decay factor close to one by putting a unitary constraint on the
recurrent weight (Arjovsky et al., 2016; Wisdom et al., 2016). Although this approach is
theoretically motivated, it restricts the space of learnt parameters.

More relevant to our work, the idea of using less or adaptive computation for good has been
proposed in (Graves, 2016; Yu et al., 2017; 2018; Seo et al., 2018). Most of these works are
based on the assumption that some of timesteps in a sequence are unimportant and thus
can be ignored to reduce the cost of computation and increase the performance of recurrent
networks. Different form our approach, these methods lack theoretical supports and do not
directly aim to solve the problem of memorizing long-term dependencies.

Dilated RNN (Chang et al., 2017) is another RNN-based proposal which improves long-term
learning by stacking multiple dilated recurrent layers with hierarchical skip-connections.
This theoretically guarantees the mean recurrent length and shares with our method the idea
to construct a measurement on memorization capacity of the system and propose solutions
to optimize it. The difference is that our system is memory-augmented neural networks
while theirs is multi-layer RNNs, which leads to totally different optimization problems.

Recent researches recommend to replace traditional recurrent models by other neural archi-
tectures to overcome the vanishing gradient problem. The Transformer (Vaswani et al., 2017)
attends to all timesteps at once, which ensures instant access to distant timestep yet requires
quadratic computation and physical memory proportional to the sequence length. Memory-
augmented neural networks (MANNs), on the other hand, learn to establish a limited-size
memory and attend to the memory only, which is scalable to any-length sequence. Com-
pared to others, MANNs resemble both computer architecture design and human working
memory (Logie, 2014). However, the current understanding of the underlying mechanisms
and theoretical foundations for MANN are still limited.

Recent works on MANN rely almost on reasonable intuitions. Some introduce new address-
ing mechanisms such as location-based (Graves et al., 2014), least-used (Santoro et al., 2016)
and order-based (Graves et al., 2016). Others focus on the scalability of MANN by using
sparse memory access to avoid attending to a large number of memory slots (Rae et al.,
2016). These problems are different from ours which involves MANN memorization capacity
optimization.

Our local optimal solution to this problem is related to some known neural caching (Grave
et al., 2017b;a; Yogatama et al., 2018) in terms of storing recent hidden states for later
encoding uses. These methods either aim to create structural bias to ease the learning
process (Yogatama et al., 2018) or support large scale retrieval (Grave et al., 2017a). These
are different from our caching purpose, which encourages overwriting and relaxes the equal
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contribution assumption of the optimal solution. Also, the details of implementation are
different as ours uses local memory-augmented attention mechanisms.

5 Conclusions

We have introduced Uniform Writing (UW) and Cached Uniform Writing (CUW) as faster
solutions for longer-term memorization in MANNs. With a comprehensive suite of synthetic
and practical experiments, we provide strong evidences that our simple writing mechanisms
are crucial to MANNs to reduce computation complexity and achieve competitive perfor-
mance in sequence modeling tasks. In complement to the experimental results, we have
proposed a meaningful measurement on MANN memory capacity and provided theoreti-
cal analysis showing the optimality of our methods. Further investigations to tighten the
measurement bound will be the focus of our future work.
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Appendix

A Derivation on the bound inequality in linear dynamic system

The linear dynamic system hidden state is described by the following recursive equation:

ht = Wxt + Uht−1 + b

By induction,

ht =

t∑
i=1

U t−iWxi + C

where C is some constant with respect to xi. In this case, ∂ht

∂xi
= U t−iW . By applying norm

sub-multiplicativity5,

ci−1,t =
∥∥U t−i+1W

∥∥
≤ ‖U‖

∥∥U t−iW∥∥
= ‖U‖ ci,t

That is, λc = ‖U‖.

B Derivation on the bound inequality in standard RNN

The standard RNN hidden state is described by the following recursive equation:

ht = tanh (Wxt + Uht−1 + b)

From ∂ht

∂xi
= ∂ht

∂ht−1

∂ht−1

∂xi
, by induction,

∂ht
∂xi

=

 t∏
j=i+1

∂hj
∂hj−1

 ∂hi
∂xi

=

 t∏
j=i

diag
(
tanh′ (aj)

)U t−iW

where aj = Wxj + Uhj−1 + b and diag (·) converts a vector into a diagonal matrix. As

0 ≤ tanh′ (x) = 1 − tanh (x)
2 ≤ 1,

∥∥diag (tanh′ (X)
)∥∥ is bounded by some value B. By

applying norm sub-multiplicativity,

ci−1,t =

∥∥∥∥∥∥
 t∏
j=i

diag
(
tanh′ (aj)

) diag (tanh′ (ai−1)
)
U t−i+1W

∥∥∥∥∥∥
≤ ‖U‖

∥∥∥∥∥∥
t∏
j=i

diag
(
tanh′ (aj)

)
U t−iW

∥∥∥∥∥∥∥∥diag (tanh′ (ai−1)
)∥∥

= B ‖U‖ ci,t

That is, λc = B ‖U‖.

5If not explicitly stated otherwise, norm refers to any consistent matrix norm which satisfies
sub-multiplicativity.
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C Derivation on the bound inequality in LSTM

For the case of LSTM, the recursive equation reads:

ct = σ (Ufxt +Wfht−1 + bf )� ct−1
+ σ (Uixt +Wiht−1 + bi)� tanh (Uzxt +Wzht−1 + bz)

ht = σ (Uoxt +Woht−1 + bo)� tanh (ct)

Taking derivatives,

∂hj
∂hj−1

= σ′ (oj) tanh (cj)Wo + σ (oj) tanh′ (cj)σ
′ (fj) cj−1Wf

+ σ (oj) tanh′ (cj)σ
′ (ij) tanh (zj)Wi + σ (oj) tanh′ (cj)σ (ij) tanh′ (zj)Wz

∂hj−1
∂xj−1

= σ′ (oj−1) tanh (cj−1)Uo + σ (oj−1) tanh′ (cj−1)σ′ (fj−1) cj−2Uf

+ σ (oj−1) tanh′ (cj−1)σ′ (ij−1) tanh (zj−1)Ui + σ (oj−1) tanh′ (cj−1)σ (ij−1) tanh′ (zj−1)Uz

∂hj
∂xj

= σ′ (oj) tanh (cj)Uo + σ (oj) tanh′ (cj)σ
′ (fj) cj−1Uf

+ σ (oj) tanh′ (cj)σ
′ (ij) tanh (zj)Ui + σ (oj) tanh′ (cj)σ (ij) tanh′ (zj)Uz

where oj denotes the value in the output gate at j-th timestep (similar notations are used
for input gate (ij), forget gate (fj) and cell value (zj)) and “non-matrix” terms actually
represent diagonal matrices corresponding to these terms. Under the assumption that h0=0,
we then make use of the results in (Miller & Hardt, 2018) stating that ‖ct‖∞ is bounded for
all t. By applying l∞-norm sub-multiplicativity and triangle inequality, we can show that

∂hj
∂hj−1

∂hj−1
∂xj−1

= M
∂hj
∂xj

+N

with

‖M‖∞ ≤ 1/4 ‖Wo‖∞ + 1/4 ‖Wf‖∞ ‖cj‖∞ + 1/4 ‖Wi‖∞ + ‖Wz‖∞ = Bm

‖N‖∞ ≤ 1/16 ‖WoUi‖∞ + 1/16 ‖WoUf‖∞
(
‖cj‖∞ + ‖cj−1‖∞

)
+ 1/4 ‖WoUz‖∞

+ 1/16 ‖WiUo‖∞ + 1/16 ‖WiUf‖∞
(
‖cj‖∞ + ‖cj−1‖∞

)
+ 1/4 ‖WiUz‖∞

+ 1/16
(
‖WfUo‖∞ + 1/16 ‖WfUi‖∞ + 1/4 ‖WfUz‖∞

) (
‖cj‖∞ + ‖cj−1‖∞

)
+ 1/4 ‖WzUo‖∞ + 1/4 ‖WzUf‖∞

(
‖cj‖∞ + ‖cj−1‖∞

)
+ 1/4 ‖WzUi‖∞

= Bn

By applying l∞-norm sub-multiplicativity and triangle inequality,

ci−1,t =

∥∥∥∥∥∥
t∏

j=i+1

∂hj
∂hj−1

∂hi
∂hi−1

∂hi−1
∂xi−1

∥∥∥∥∥∥
∞

=

∥∥∥∥∥∥
t∏

j=i+1

∂hj
∂hj−1

(
∂hi
∂xi

m+ n

)∥∥∥∥∥∥
∞

≤ Bmci,t +Bn

t∏
j=i+1

∥∥∥∥ ∂hj
∂hj−1

∥∥∥∥
∞
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As LSTM is λ-contractive with λ < 1 in the l∞-norm (readers are recommended to refer to

(Miller & Hardt, 2018) for proof), which implies
∥∥∥ ∂hj

∂hj−1

∥∥∥
∞
< 1, Bn

t∏
j=i+1

∥∥∥ ∂hj

∂hj−1

∥∥∥
∞
→ 0

as t− i→∞. For t− i <∞, under the assumption that
∂hj

∂xj
6= 0, we can always find some

value B <∞ such that ci−1,t ≤ Bci,t. For t−i→∞, λc → Bm. That is, λc = max (Bm, B).

D Proof of theorem 1

Proof. Given that λcci,t ≥ ci−1,t with some λc ∈ R+, we can use ct,tλ
t−i
c as the upper bound

on ci,t with i = 1, t, respectively. Therefore,

f(0) ≤
T∑
t=1

ct,T ≤ cT,T
T∑
t=1

λT−tc = f (λc)

where f(λ) = cT,T
T∑
t=1

λT−t is continuous on R+. According to intermediate value theorem,

there exists λ ∈ (0, λc] such that cT,T
T∑
t=1

λT−t =
T∑
t=1

ct,T .

E Proof of theorem 2

Proof. According to Theorem 1, there exists some λi ∈ R+such that the summation of

contribution stored between Ki and Ki+1 can be quantified as cKi+1,Ki+1

Ki+1∑
t=Ki

λ
Ki+1−t
i

(after ignoring contributions before Ki-th timestep for simplicity). Let denote P (λ) =
Ki+1∑
t=Ki

λKi+1−t, we have P ′ (λ) > 0,∀λ ∈ R+. Therefore, P (λi) ≥ P
(

min
i

(λi)
)

. Let C = min
i

(ci,i)

and λ = min
i

(λi), the average contribution stored in a MANN has a lower bound quantified

as Iλ, where Iλ = C

K1∑
t=1

λK1−t+
K2∑

t=K1+1

λK2−t+...+
KD∑

t=KD−1+1

λKD−t+
T∑

t=KD+1

λT−t

T .

F Proof of theorem 3

Proof. The second-order derivative of fλ (x) reads:

f ′′λ (x) = − (lnλ)
2

1− λ
λx (11)

We have f ′′λ, (x) ≤ 0 with ∀x ∈ R+ and 1 > λ > 0, so fλ (x) is a concave function. Thus, we
can apply Jensen inequality as follows:

1

D + 1

D+1∑
i=1

fλ(li) ≤ fλ

(
D+1∑
i=1

1

D + 1
li

)
= fλ

(
T

D + 1

)
(12)

Equality holds if and only if l1 = l2 = ... = lD+1 = T
D+1 . We refer to this as Uniform

Writing strategy. By plugging the optimal values of li, we can derive the maximized average
contribution as follows:

Iλmax ≡ gλ (T,D) =
C (D + 1)

T

(
1− λ

T
D+1

1− λ

)
(13)
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When λ = 1, Iλ = C
T

D+1∑
i=1

li = C. This is true for all writing strategies. Thus, Uniform

Writing is optimal for 0 < λ ≤ 1.

We can show that this solution is also optimal for the case λ > 1. As f ′′λ (x) > 0 with
∀x ∈ R+;λ > 1, fλ (x) is a convex function and Eq. (12) flips the inequality sign. Thus,
Iλ reaches its minimum with Uniform Writing. For λ > 1, minimizing Iλ is desirable to
prevent the system from diverging.

We can derive some properties of function g. Let x = D+1
L , gλ (L,D) = gλ (x) = Cx(λ

1
x−1
λ−1 ).

We have g′λ (x) = Cλ
(

1− λ 1
x

)
(x− lnλ) > 0 with 0 < λ ≤ 1,∀x ≥ 0, so gλ (T,D) is an

increasing function if we fix T and let D vary. That explains why having more memory slots
helps improve memorization capacity. If D = 0, gλ (T, 0) becomes E.q (5). In this case,
MANNs memorization capacity converges to that of recurrent networks.

G Summary of synthetic discrete task format

Task Input Output

Double x1x2...xT x1x2...xTx1x2...xT
Copy x1x2...xT x1x2...xT

Reverse x1x2...xT xTxT−1...x1
Add x1x2...xT

x1+xT−1

2
x2+xT−2

2 ...
xbT/2c+xdT/2e

2
Max x1x2...xT max (x1, x2) max (x3, x4) ...max (xT−1, xT )

Table 5: Synthetic discrete task’s input-output formats. T is the sequence length.

H UW performance on bigger memory

Model Nh Copy (L=500)

DNC 128 24.19%
DNC+UW 128 81.45%

Table 6: Test accuracy (%) on synthetic copy task. MANNs have 50 memory slots. Both
models are trained with 100,000 mini-batches of size 32.

I Memory operating behaviors on synthetic tasks

In this section, we pick three models (DNC, DNC+UW and DNC+CUW) to analyze their
memory operating behaviors. Fig. 4 visualizes the values of the write weights and read
weights for the copy task during encoding input and decoding output sequence, respectively.
In the copy task, as the sequence length is 50 while the memory size is 4, one memory slot
should contain the accumulation of multiple timesteps. This principle is reflected in the
decoding process in three models, in which one memory slot is read repeatedly across several
timesteps. Notably, the number of timesteps consecutively spent for one slot is close to 10-
the optimal interval, even for DNC ( Fig. 4(a)), which implies that the ultimate rule would
be the uniform rule. As UW and CUW are equipped with uniform writing, their writing
patterns follow the rule perfectly. Interestingly, UW chooses the first written location for the
final write (corresponding to the <eos> token) while CUW picks the last written location.
As indicated in Figs. 4(b) and (c), both of them can learn the corresponding reading pattern
for decoding process, which leads to good performances. On the other hand, regular DNC
fails to learn a perfect writing strategy. Except for the timesteps at the end of the sequence,
the timesteps are distributed to several memory slots while the reading phase attends to one
memory slot repeatedly. This explains why regular DNC cannot compete with the other
two proposed methods in this task.
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Figure 4: Memory operations on copy task in DNC (a), DNC+UW (b) and DNC+CUW(c).
Each row is a timestep and each column is a memory slot.
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Figure 5: Memory operations on max task in DNC (a), DNC+UW (b) and DNC+CUW(c).
Each row is a timestep and each column is a memory slot.

For the max task, Fig. 5 displays similar visualization with an addition of write gate during
encoding phase. The write gate indicates how much the model should write the input at
some timestep to the memory. A zero write gate means there is no writing. For this task,
a good model should discriminate between timesteps and prefer writing the greater ones.
As clearly seen in Fig. 5(a), DNC suffers the same problem as in copy task, unable to
synchronize encoding writing with decoding reading. Also, DNC’s write gate pattern does
not show reasonable discrimination. For UW (Fig. 5(b)), it tends to write every timestep
and relies on uniform writing principle to achieve write/read accordance and thus better
results than DNC. Amongst all, CUW is able to ignore irrelevant timesteps and follows
uniform writing at the same time (see Fig. 5(c)).

J Visualizations of model performance on sinusoidal regression tasks

We pick randomly 3 input sequences and plot the output sequences produced by DNC,
UW and CUW in Figs. 6 (clean) and 7 (noisy). In each plot, the first and last 100
timesteps correspond to the given input and generated output, respectively. The ground
truth sequence is plotted in red while the predicted in blue. We also visualize the values of
MANN write gates through time in the bottom of each plots. In irregular writing encoding
phase, the write gate is computed even when there is no write as it reflects how much weight
the controller puts on the timesteps. In decoding, we let MANNs write to memory at every
timestep to allow instant update of memory during inference.

Under clean condition, all models seem to attend more to late timesteps during encoding,
which makes sense as focusing on late periods of sine wave is enough for later reconstruction.
However, this pattern is not clear in DNC and UW as in CUW. During decoding, the write
gates tend to oscillate in the shape of sine wave, which is also a good strategy as this directly
reflects the amplitude of generation target. In this case, both UW and CUW demonstrate
this behavior clearer than DNC.

Under noisy condition, DNC and CUW try to follow sine-shape writing strategy. However,
only CUW can learn the pattern and assign write values in accordance with the signal period,
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Figure 6: Sinusoidal generation with clean input sequence for DNC, UW and CUW in
top-down order.

which helps CUW decoding achieve highest accuracy. On the other hand, UW choose to
assign write value equally and relies only on its maximization of timestep contribution.
Although it achieves better results than DNC, it underperforms CUW.

K Comparison with non-recurrent methods in flatten image classification
task

Model MNIST pMNIST

DNC+CUW 99.1 96.3
The Transformer? 98.9 97.9
Dilated CNN� 98.3 96.7

Table 7: Test accuracy (%) on MNIST, pMNIST. Previously reported results are from
(Vaswani et al., 2017)? and (Chang et al., 2017)�.

L Details on document classification datasets

Dataset Classes Average
lengths

Max
lengths

Train
samples

Test
samples

IMDb 2 282 2,783 25,000 25,000
Yelp Review Polarity (Yelp P.) 2 156 1,381 560,000 38,000

Yelp Review Full (Yelp F.) 5 158 1,381 650,000 50,000
AG’s News (AG) 4 44 221 120,000 7,600
DBPedia (DBP) 14 55 1,602 560,000 70,000

Yahoo! Answers (Yah. A.) 10 112 4,392 1,400,000 60,000

Table 8: Statistics on several big document classification datasets
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Figure 7: Sinusoidal generation with noisy input sequence for DNC, UW and CUW in
top-down order.

M Document classification detailed records

Model AG IMDb Yelp P. Yelp F.

UW

1 93.42 91.39 96.39 64.89
2 93.52 91.30 96.31 64.97
3 93.69 91.25 96.39 65.26

Mean/Std 93.54±0.08 91.32±0.04 96.36±0.03 65.04±0.11

CUW

1 93.61 91.26 96.42 65.63
2 93.87 91.18 96.29 65.05
3 93.70 91.32 96.36 64.80

Mean/Std 93.73±0.08 91.25±0.04 96.36±0.04 65.16±0.24

Table 9: Document classification accuracy (%) on several datasets reported for 3 different
runs. Bold denotes the best records.

20


