
Learning to Constrain Policy Optimization with
Virtual Trust Region

Hung Le, Thommen Karimpanal George, Majid Abdolshah, Dung Nguyen,
Kien Do, Sunil Gupta, Svetha Venkatesh

Applied AI Institute, Deakin University, Geelong, Australia
thai.le@deakin.edu.au

Abstract

We introduce a constrained optimization method for policy gradient reinforcement
learning, which uses a virtual trust region to regulate each policy update. In addi-
tion to using the proximity of one single old policy as the normal trust region, we
propose forming a second trust region through another virtual policy representing
a wide range of past policies. We then enforce the new policy to stay closer to
the virtual policy, which is beneficial if the old policy performs poorly. More im-
portantly, we propose a mechanism to automatically build the virtual policy from
a memory of past policies, providing a new capability for dynamically learning
appropriate virtual trust regions during the optimization process. Our proposed
method, dubbed Memory-Constrained Policy Optimization (MCPO), is examined
in diverse environments, including robotic locomotion control, navigation with
sparse rewards and Atari games, consistently demonstrating competitive perfor-
mance against recent on-policy constrained policy gradient methods.

1 Introduction

Deep reinforcement learning (RL) is the current workhorse in machine learning. Using neural net-
works to approximate value and policy functions enables classical approaches such as Q-learning
[29] and policy gradient [23] to achieve promising results on many challenging problems such as
Go, Atari games and robotics [21, 15, 12, 13]. Compared to Deep Q-learning, deep policy gradient
(PG) methods are often more flexible and applicable to discrete and continuous action problems.
However, these methods tend to suffer from high sample complexity and training instability since
the gradient may not accurately reflect the policy gain when the policy changes substantially [6].
This is exacerbated for deep policy networks where numerous parameters need to be optimized, and
minor updates in parameter space can lead to considerable changes in policy space.

To address this issue, one solution is to regularize each policy update by restricting the Kullback–
Leibler (KL) divergence between the new policy and the previous one, which can guarantee mono-
tonic policy improvement [17]. However, jointly optimizing the approximate advantage function
and the KL term does not work in practice [17]. Therefore, Schulman et al. (2015) proposed Trust
Region Policy Optimization (TRPO) to constrain the new policy within a KL divergence radius,
which requires second-order gradients. Alternatives such as Proximal Policy Optimization (PPO)
[19] use a simpler first-order optimization with adaptive KL or clipped surrogate objective while
still maintaining the reliable performance of TRPO. Recent methods recast the problem through a
new lens using Expectation-Maximization or Mirror Descent Optimization, and this also results in
first-order optimization with KL divergence term in the loss function [1, 22, 31, 24].

An issue with the above methods is that the previous policy used to restrict the new policy may be
suboptimal and thus unreliable in practice. For example, due to stochasticity and approximations,
the new policy may fall into a local optimum even under trust-region optimizations. Then in the

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

next update, this policy will become the “previous” policy, and will continue pulling the next policy
to stay in the local optimum, thus slowing down the training progress. For on-policy methods using
mini-batch updates like PPO, the situation is more problematic as the “previous” policy is defined
as the old policy to collect data, which can be either very far or close to the current policy. There is
no guarantee that the old policy defines a reasonable trust region for regulating the new policy.

In this paper, we propose a novel constrained policy iteration procedure, dubbed Memory-
Constrained Policy Optimization (MCPO), wherein a virtual policy representing memory of past
policies regularizes each policy update. The virtual policy forms a virtual trust region, attracting the
new policy more when the old policy performs badly, which prevents the optimization from falling
into local optimum caused by the old policy of poor quality. As such, we measure 2 KL divergences
corresponding to the virtual and old policy, and assign different weights to the two KL terms in
building the objective function. The weights are computed dynamically based on the performance
of the two policies (the higher performer yields higher weights).

In contrast to prior works using heuristics (e.g. running average or mean of past policies) to form
additional trust regions [28], we argue that the virtual policy should be determined dynamically to
maximize the performance on current training data. Thus we store policies in a policy memory, and
learn to extract the most relevant ones to the current context. We sum the past policies in a weighted
manner wherein the weights are generated by a neural network–named the attention network, which
takes the information of the current, the old and the last virtual policy as the input. The attention
network is optimized to maximize the approximate expected advantages of the virtual policy. We
jointly optimize the policy and attention networks to train our system, alternating between sampling
data from the policy and updating the networks in a mini-batch manner.

We verify our proposed MCPO through a diverse set of experiments and compare our performance
with that of recent constrained policy optimization baselines. In our experiment on classical control
tasks, amongst tested models, MCPO consistently achieves better performance across tasks and
hyperparameters. Our testbed on 6 Mujoco tasks shows that MCPO with a big policy memory
is performant where the attention network plays an important role. We also demonstrate MCPO’s
capability of learning efficiently on sparse reward and high-dimensional problems such as navigation
and Atari games. Finally, our ablation study highlights the necessity of MCPO’s components such
as the virtual policy and the attention network.

2 Background: Policy Optimization with Trust Region

In this section, we briefly review some fundamental constrained policy optimization approaches.
A general idea is to force the new policy πθ to be close to a recent policy πθold . In this paper, we
usually refer to a policy via its parameters (i.e. policy θ means policy πθ). We also use finite-horizon
estimators for the advantage with discount factor γ ∈ (0, 1) and horizon T .

Conservative Policy Iteration (CPI) This method starts with a basic objective of policy gradient
algorithms, which is to maximize the expected advantage Ât.

LCPI (θ) = Êt
[
πθ (at|st)
πθold (at|st)

Ât

]
where the advantage Ât is a function of returns collected from (st, at) by using πθold (see Appendix
A.2) and Êt [·] indicates the empirical average over a finite batch of data. To constrain policy updates,
the new policy is a mixture of the old and the greedy policy: θ̃ = argmax LCPI (θ). That is,
θ = αθold + (1− α)θ̃ where α is the mixture hyperparameter [6]. As the data is sampled from the
previous iteration’s policy θold, the objective needs importance sampling estimation. Hereafter, we
denote πθ(at|st)

πθold (at|st)
as τt (θ) for short.

KL-Regularized Policy Optimization To enforce the constraint, one can jointly maximize the ad-
vantage and minimize KL divergence between the new and old policy, which ensures monotonic
improvement [17].

LKL (θ) = Êt
[
τt (θ) Ât − βKL [πθold (·|st) , πθ (·|st)]

]
2

where β is a hyperparameter that controls the update conservativeness, which can be fixed (KL
Fixed) or changed (KL Adaptive) during training [19].

Trust Region Policy Optimization (TRPO) The method optimizes the expected advantage with
hard constraint [17]. This is claimed as a practical implementation, less conservative than the theo-
retically justified algorithm using KL regularizer mentioned above.

LTRPO (θ) = Êt
[
τt (θ) Ât

]
st δ ≥ KL [πθold (·|st) , πθ (·|st)]

where δ is the KL constraint radius.

Proximal Policy Optimization (PPO) PPO is a family of constrained policy optimization, which
uses first-order optimization and mini-batch updates including KL Adaptive and clipped PPO. In
this paper, we use PPO to refer to the method that limits the change in policy by clipping the loss
function (clipped PPO) [19]. The objective LPPO is defined as

Êt
[
min

(
τt (θ) Ât, clip (τt (θ) , 1− ε, 1 + ε) Ât

)]
where ε is the clip hyperparameter.

In all the above methods, θ is the currently optimized policy, which is also referred to as the current
policy. θold represents a past policy, which can be one or many update steps before the current
policy. In either case, the rule to decide θold is fixed throughout training. If θold is suboptimal, it
is unavoidable that the following updates will be negatively impacted. We will address this issue in
the next section.

3 Memory-Constrained Policy Optimization

In trust-region policy gradient methods with mini-batch updates such as PPO, the old policy θold is
often the last “sampling” policy for collecting observations from the environment. This policy is,
by design, fixed during updates of the main policy until the next interaction with the environment.
This means θold may not immediately precede the current policy θ but may be from many (update)
steps before. Since θold is not up-to-date and could possibly be not good, using it to constrain the
current policy θ can cause the suboptimal update of θ. Similarly, the immediately preceding policy
could also be poor in quality and thus, using it as θold could be detrimental to the optimization.

To tackle this issue, we propose to learn to constrain θ towards a weighted combination of multi-
ple past policies besides θold. We argue that we can optimize the attention network to ensure the
combined policy is optimal. Below is formal description of our method.

3.1 Virtual Policy

Computing the virtual policy via past policies The virtual policy should be determined based
on the past policies and their contexts such as quality, distance or entropy. A simple strategy such as
taking average of past policies is likely suboptimal as the quality of these policies vary and some can
be irrelevant to the current learning context. Let ψ be the weighted combination of M past policies
{θi}Mi=1, which we refer to as a “virtual” policy for naming convenience, ψ is computed as follows:

ψ =

M∑
i=1

fϕ(v)iθi (1)

where fϕ is a neural network parameterized by ϕ which outputs softmax attention weights over the
M past policies, v is a “context” vector capturing different relations among the current policy θ, the
last sampling policy θold, and the last virtual policy ψold. We build the context by extracting specific
features: pair-wise distances between policies, the empirical returns of these policies, policy entropy
and value losses (details in Appendix Table 4). Intuitively, these features suggest which virtual
policy will yield high performance (e.g., a virtual policy that is closer to the policy that obtained
high return and low value loss). The details of fϕ training will be given in Sec. 3.2.

3

Algorithm 1 Memory-Constrained Policy Optimization.
Require: A policy bufferM, an initial policy πθold . T , K, B are the learning horizon, number of

update epochs, and batch size, respectively.
1: Initialize ψold ← θold, θ ← θold
2: for iteration = 1, 2, ... do
3: Run policy πθold in environment for T timesteps. Compute advantage estimates Â1, ..., ÂT
4: for epoch = 1, 2, ...K do
5: for batch = 1, 2, ...T/B do
6: Compute ψ (Eq. 1) using ψold, θ, θold, optimize θ and ϕ by maximizing LMCPO (Eq.

6)
7: if D (θ, ψ) > D (θold, ψ) then add θ toM
8: if |M| > N then remove the oldest item inM
9: ψold ← ψ

10: end for
11: end for
12: θold ← θ
13: end for

Storing past policies with diversity-promoting writing We use a memory bufferM to store past
policies. We treatM as a queue with maximum capacity N , which means a new policy θ will be
added to the end ofM and ifM is full, the oldest policy will be discarded. However, we do not
add any new policy θ to M unconditionally but only when θ satisfies our “diversity-promoting”
condition. Let D (a, b) = Êt [KL [πa (·|st) , πb (·|st)]] denote the “distance” between 2 policies πa
and πb, the diversity-promoting writing is defined as:

Adding θ toM if D(θ, ψ) ≥ D(θold, ψ) (2)

where D(θold, ψ) serves as a threshold. This condition makes sure that the policy to be added is far
enough from ψ. It is reasonable because if θ is too similar to ψ (in regard of θold), the advantage of
storing multiples past policies in order to find a good one will disappear. We will elaborate more on
this in Sec. 4.5.

3.2 Policy Optimization with Two Trust Regions

Optimizing the policy parameters θ During policy optimization, we make use of both θold and
ψ to constrain θ. Hence, θold and ψ form 2 trust regions, and we aim to enforce the new policy to be
closer to the better one. To this end, we propose to learn a new policy θ by maximizing the following
objective function:

L1(θ) =Êt
[
τt(θ)Ât

]
− βÊt

[
(1− αt (·|st))KL [πθold (·|st) , πθ (·|st)]

+ αt (·|st)KL [πψ (·|st) , πθ (·|st)]
]

(3)

where β is the weight balancing between the main objective and the policy constraints, αt is the
weight balancing between constraining θ towards ψ and θ towards θold. The expectation is estimated
by taking average over t in a mini-batch of sampled data. We note that in the early stage of learning,
the attention network is not trained well, and thus the quality of the virtual policy ψ may be worse
than θold. In the long-term, ψ will get better and tend to provide a better trust-region. Hence,
we need to use both trust regions to ensure maximal performance at any learning stage. We can
also prove that using our proposed two trust regions guarantees monotonic policy improvement (see
Appendix. C). Below we introduce a mechanism to automatically determine the contribution of the
two trust regions through computing α and β coefficients.

Intuitively, if the virtual policy is better than the old policy, the new policy should be kept close to
the virtual policy and vice versa. Hence, αt should be proportional to the contribution of ψ to the
final performance with regard to that of θold. Thus, we define: αt (·|st) = exp(Rt(ψ))

exp(Rt(ψ))+exp(Rt(θold))

4

Model
Pendulum LunarLander BWalker

1M 1M 5M
KL Adaptive (dtarg = 0.01) -147.52±9.90 254.26±19.43 247.70±14.16
KL Fixed (β = 0.1) -464.29±426.27 256.75±20.53 263.56±10.04
PPO (clip ε = 0.3) -591.31±229.32 259.93±22.52 260.51±17.86
MDPO (β0 = 2) -135.52±5.28 227.76±16.96 226.80±15.67
VMPO (α0 = 1) -139.50±5.54 212.85±43.35 238.82±11.11
MCPO (N = 5) -133.42±4.53 262.23±12.47 265.80±5.55
MCPO (N = 10) -146.88±3.78 263.04±11.48 266.26±8.87
MCPO (N = 40) -135.57±5.22 267.19±13.42 249.51±12.75

Table 1: Mean and std. over 5 runs on classical control tasks (with number of training steps). Bold
denotes the best mean. Underline denotes good results (if exist), statistically indifferent from the best
in terms of Cohen effect size less than 0.5. The baselines are reported with best hyperparameters.

where Rt(ψ), Rt(θold) are the estimated returns corresponding to ψ and θold, respectively. We
estimateRt(·) via weighted importance sampling, that is, Rt(·) = τt(·)Ât where both are computed
using the same st. We also dynamically adjust β by switching between 2 values βmin and βmax
(0 < βmin < βmax) as follows:

β =

{
βmax if D(θold, θ) > D(θold, ψ)

βmin otherwise
(4)

whereD(·, ·) is again the KL “distance”. The reason behind this update of β is to encourage stronger
enforcement of the constraint when θ is too far from θold. Unlike using a fixed threshold dtarg to
change β (e.g in KL Adaptive, if D (θold, θ) > dtarg, increase β [19]), we make use of ψ as a
reference for selecting β. This allows a dynamic threshold that varies depending on the current
learning. We name this mechanism as switching-β rule.

Optimizing the attention network parameters ϕ To encourage the attention network fϕ (Eq. 1)
to produce the optimal attention weights over past policies, we maximize the following objective:

L2(ϕ) = Êt [Rt(ψϕ)] (5)
which is the approximate expected return w.r.t. ψϕ. We write ψϕ to emphasize that ψ is a function
of ϕ (as formulated in Eq. 1). We use gradient ascent to update ϕ by backpropagating the gradient
∂L2

∂ϕ through the attention network.

By learning fϕ, we can guarantee that the virtual policy ψ is the best combination of past policies
in terms of return. Note that for on-policy learning setting, optimizing “soft” attention weights is
usually more robust than searching for the best past policy in M because the estimation of the
expected return using current data samples can be noisy and is not always reliable. Also, searching
is computationally more expensive than using the attention.

Final Objective We train the whole system by maximizing the following objective:

LMCPO = L1(θ) + L2(ϕ) (6)

where MCPO stands for Memory-Constrained Policy Optimization. We optimize θ and ψ alternately
by fixing one and learning the other. We implement MCPO using minibatch update procedure [19].
MCPO Pseudocode is given in in Algo 1. For notational simplification, the algorithm uses 1 actor.

4 Experimental results

In our experiments, we show our optimization scheme is superior in different aspects: hyperpa-
rameter sensitivity, sample efficiency and consistent performance in continuous and discrete action
spaces. The main baselines are recent on-policy constrained methods that use first-order optimiza-
tion, in which most of them employ KL terms in the objective function. They are KL Adaptive,
KL Fixed, PPO [19], MDPO [24], VMPO [22] and TRGPPO [27] . We also include second-order

5

5160 7070

Update timesteps corresponding to different policy types

query

0 2000 4000 6000
Policy Update Step

0.0

0.2

0.4

0.6

0.8
A

v
e
ra

g
e
 R

e
tu

rn

old

0 2M 4M 6M 8M 10M
Step

10

15

20

25

30

35

M
os

t
A

tt
en

de
d

S
lo

t
j*

Hopper

Humanoid

HumanoidStandup

(a)

(c)(b)

~

Figure 1: (a) Policy analysis on Unlock. First row (red lines): steps where a policy is added toM, i.e.
the steps of θj . Second row (green lines): steps of old policies θold. Third row (yellow lines): steps of
mostly attended policy, approximating ψ. Fourth row (cyan lines): 3 steps of interest where we want
to find their attended steps. Blue arrows link a query step and the step that receives highest attention.
(b) Quality of ψ vs. θold. Average return collected by ψ and θold at different stages of training. (c) 3
Mujoco tasks. The slot inM received the highest attention j∗ = argmaxj fϕ (vcontext)j over time.

methods such as TRPO [17] and ACKTR [30]. Across experiments, for MCPO, we fix βmax = 10,
βmin = 0.01 and only tune N . More details on the baselines and tasks are given in Appendix B.1.
Our code is available at https://github.com/thaihungle/MCPO.

4.1 Classical Control

In this section, we compare MCPO to other first-order policy gradient methods (KL Adaptive, KL
Fixed, PPO, MDPO and VMPO) on 3 classical control tasks: Pendulum, LunarLander and Bipedal-
Walker, which are trained for one, one and five million environment steps, respectively. Here, we
are curious to know how the model performance fluctuates as the hyperparameters vary. For each
model, we choose one hyperparameter that controls the conservativeness of the policy update, and
we try different values for the signature hyperparameter while keeping the others the same. For
example, for PPO, we tune the clip value ε; for KL Fixed we tune β coefficient and these possible
values are chosen following prior works. For our MCPO, we tune the size of the policy memory
N (5, 10 and 40). We do not try bigger policy memory size to keep MCPO running efficiently (see
Appendix B.2 for details).

Table 1 reports the results of MCPO and 5 baselines with the best hyperparameters. For these sim-
ple tasks, tuning the hyperparameters often helps the model achieve at least moderate performance.
However, models like KL Adaptive and VMPO cannot reach good performance despite being tuned.
PPO shows good results on LunarLander and BipedalWalker, yet underperforms others on Pendu-
lum. Interestingly, if tuned properly, the vanilla KL Fixed can show competitive results compared
to PPO and MDPO in BipedalWalker. Amongst all, our MCPO with suitable N achieves the best
performance on all tasks. Remarkably, its performance does not fluctuate much as N changes from
5 to 40, often obtaining good and best results. We speculate that for simple tasks, either with small
or big M, the policy attention can always find optimal virtual policy ψ, and thus, ensures stable
performance of MCPO. On the contrary, other methods observe a clear drop in performance as
hyperparameters change (see Appendix B.2 for learning curves and the full table).

4.2 Navigation

Here, we validate our method on sparse reward environments using MiniGrid library [4]. In particu-
lar, we test MCPO and other baselines (same as above) on Unlock and UnlockPickup tasks. In these
tasks, the agent navigates through rooms and picks up objects to complete the episode. The agent
only receives reward +1 if it can complete the episode successfully. For sample efficiency test, we

6

https://github.com/thaihungle/MCPO

Model HalfCheetah Walker2d Hopper Ant Humanoid HumanoidStandup
TRPO 2,811±114 3,966±56 3,159±72 2,438±402 4,576±106 145,143±3,702
PPO 4,753±1,614 5,278±594 2,968±1,002 3,421±534 3,375±1,684 155,494±6,663
MDPO 4,774±1,598 4,957±330 3,153±956 3,553±696 1,620±2,145 90,646±5,855
TRGPPO 2,811±114 5,009±391 3,713±275 4,796±837 6,242±1192 162,185±3755
Mean ψ 4,942±3,095 5,056±842 3,430±259 4,570±548 353±27 71,308±11,113
MCPO 6,173±595 5,120±588 3,620±252 4673±249 4,848±711 195,404±32,801

Table 2: Mean and std. over 5 runs on 6 Mujoco tasks at 10M environment steps.

train all models on Unlock (find key and open the door) and UnlockPickup (find key, open the door
and pickup an object), for only 100,000 and 1 million environment steps, respectively. The models
use the best conservative hyperparameters found in the previous task (more in Appendix B.3).

Appendix’s Fig. 3 shows the learning curves of examined models on these two tasks. For Unlock
task, except for MCPO and VMPO, 100,000 steps seem insufficient for other models to learn useful
policies. When trained with 1 million steps on UnlockPickup, the baselines can find better poli-
cies, yet still underperform MCPO. Here VMPO shows faster learning progress than MCPO at the
beginning, however it fails to converge to the best solution. Our MCPO is the best performer, con-
sistently ending up with average return of 0.9 (90% of episodes finished successfully). To achieve
sample-efficiency, MCPO needs to store and search for good policies (rarely found in sparse reward
problems), and adhere to it during optimization. MCPO’s success may be attributed to utilizing the
virtual policy that has the highest return.

To illustrate how the virtual policy supports MCPO’s performance, we analyze the relationships
between the old (θold), the virtual policy (ψ) and the policies stored inM (θj) throughout Unlock
training. Fig. 1 (a) plots the location of these policies over a truncated period of training (from
update step 5160 to 7070). Due to diversity-promoting rule, the steps where policies are added to
M can be uneven (first row-red lines), often distributed right after the locations of the old policy
(second row-green lines). We query at 10-th step behind the old policy (fourth row-cyan lines) to
find which policy in M has the highest attention (third row-yellow lines, linked by blue arrows).
As shown in Fig. 1 (a) (second and third row), the attended policy, which mostly resembles ψ, can
be further or closer to the query step than the old policy depending on the training stage. Since
we let the attention network learn to attend to the policy that maximizes the advantage of current
mini-batch data, the attended one is not necessarily the old policy.

The choice of the chosen virtual policy being better than the old policy is shown in Fig. 1 (b) where
we collect several checkpoints of virtual and old policies across training and evaluate each of them
on 10 testing episodes. Here using ψ to form the second KL constraint is beneficial as the new
policy is generally pulled toward a better policy during training. That contributes to the excellent
performance of MCPO compared to other single trust-region baselines, especially KL Fixed and
Adaptive, which are very close to MCPO in term of objective function style.

4.3 Mujoco

Next, we examine MCPO and some trust-region methods from the literature that are known to
have good performance on continuous control problems: TRPO, PPO, MDPO and TRGPPO (an
improved version of PPO). To understand the role of the attention network in MCPO, we design a
variant of MCPO (N = 40): Mean ψ, which simply constructs ψ by taking average over policy
parameters inM. This baseline represents prior heuristic ways of building trust-region from past
policies [28]. We pick 6 hard Mujoco tasks and train each model for 10 million environment steps.
We report the results of best tuned models in Table 2 (see Appendix B.4 for full results).

The results show that MCPO consistently achieves good performance across 6 tasks, where it outper-
forms others significantly in HalfCheetah, Hopper, and HumanoidStandup. In other tasks, MCPO is
the second best, only slightly earning less score than the best one in Walker2d and Ant. The variant
Mean ψ shows reasonable performance for the first 4 tasks, yet almost fails to learn on the last two.
Thus, mean virtual policy can perform badly.

To understand the effectiveness of the attention network, we visualize the attention pattern of MCPO
on the last two tasks and on Hopper-a task that Mean ψ performs well on. Fig. 1 (c) illustrates that

7

Model PPO ACKTR VMPO TRGPPO MCPO
Mean 131.19 195.52 18.20 116.80 229.99

Median 52.85 25.30 13.56 43.24 65.78
Table 3: Average normalized human score over 9 games. The performance of each run is measured
by the best checkpoint during training over 10 million frames, averaged over 5 runs.

for the first two harder tasks, MCPO gradually learns to favor older policies inM (j∗ > 35), which
puts more restriction on the policy change as the model converges. This strategy seems critical
for those tasks as the difference in average return between learned ψ and Mean ψ is huge in these
cases. On the other hand, on Hopper, the top attended slots are just above the middle policies inM
(j∗ ∼ 25), which means this task prefers an average restriction. As in most cases, MCPO with big
policy memory (N = 40, more conservativeness) is beneficial. For those tasks where MCPO does
not show clear advantage, we speculate that conservative updates are less important.

We also visualize αt for HalfCheetah task, and observe an increasing trend across training steps (see
Appendix Fig. 4). As the attention network gets trained, the virtual policy becomes better and can
complement the old policy when the latter performs worse. Hence, on average, the weight αt tends
to be bigger overtime.

4.4 Atari Games

As showcasing the robustness of our method to high-dimensional inputs, we execute an experiment
on a subset of Atari games wherein the states are screen images and the policy and value function
approximator uses deep convolutional neural networks. We choose 9 typical games (6 were intro-
duced in [14] and 3 randomly chosen) and benchmark MCPO against PPO, ACKTR, VMPO and
PRGPPO, training all models for only 10 million environment steps. In this experiment, MCPO
uses N = 10 and other baselines’ hyperparameters are selected based on the original papers (see
Appendix B.5).

As seen in Table 3, MCPO is significantly better than other baselines in terms of both mean and
median normalized human score. The learning curves of all models are given in Appendix Fig.
5. To confirm MCPO maintains the leading performance with more training iterations, we train
competitive models for 40 million frames for the first 6 games (Appendix Fig. 6). The results show
that MCPO still outperforms other baselines after 40M frames.

4.5 Ablation Study

Finally, we verify MCPO’s 3 components: virtual policy (in Eq. 3), switching-β (Eq. 4) and
diversity-promoting rule (Eq. 2). We also confirm the role of choosing the right memory size N
and learning to attend to the virtual policy ψ. In the task BipedalWalkerHardcore (OpenAI Gym),
we train MCPO with different configurations for 50M steps. First, we tune N (5,10 and 40) using
the normal MCPO with all components on and find that N = 10 is the best. Keeping N = 10, we
ablate or replace our component with an alternative and report the findings as follows.

Virtual policy: To show the benefit of pushing the new policy toward the virtual policy, we imple-
ment 3 variants of MCPO (N=10) that (i) does not use ψ’s KL term in Eq. 3 (αt = 0), (ii) use a
fixed αt = 0.5 and (iii) only use ψ’s KL (αt = 1.0). All variants underperforms the normal MCPO
by a margin of 100 or 50 return. Switching-β: The results show that compared to the annealed β
strategy adopted from MDPO and adaptive β from PPO-KL, our switching-β achieves significantly
better results with about 50 and 200 return score higher, respectively. Diversity-promoting writing:
We compare our proposal with the vanilla approach that adds a new policy to M at every update
step (frequent writing) and other versions that write toM every interval of 10 and 100 update steps
(uniform and sparse writing). Frequent, uniform and sparse writing all show slow learning progress,
and ends up with low rewards. Perhaps, frequently adding policies toMmakes the memory content
similar, hastening the removal of older, yet maybe valuable policies. Uniform and sparse writing are
better, yet it can still add similar policies toM and requires additional effort for tuning the writing
interval. Learned ψ: To benchmark, we try alternatives: (1) using Mean ψ and (2) only using half

8

1 5 0

1 0 0

5 0

0

5 0

1 0 0

1 5 0

2 0 0

KL Adaptive

d = 0 .0 0 3

d = 0 .0 1

d = 0 .0 3

KL Fixed

= 0 .0 1

= 0 .1

= 1

= 1 0

MCPO (Ours)
N = 1 0

N = 4 0

N = 5

a d a p t

a n n e lle d

fixe d = 0 .5

fixe d = 1 .0

fr e q u e n t
h a lf fe a tu r e

m e a n -

n o

sp a r se

u n ifor m

0 10M 20M 30M 40M50M

1 5 0

1 0 0

5 0

0

5 0

1 0 0

1 5 0

2 0 0

MDPO

0= 0 .5

0= 1

0= 2

0 10M 20M 30M 40M 50M

PPO

clip = 0 .1

c lip = 0 .2

c lip = 0 .3

c lip = 0 .5

c lip = 0 .8

0 10M 20M 30M 40M 50M

VMPO

0= 0 .1

0= 1

0= 5

Figure 2: Ablation study on BibedalWalkerHardcore-v3: learning curves (mean and std. over 5
runs) across 50M training steps.

of the features in vcontext to generate ψ (Eq. 1). The results confirm that the Mean ψ is not a strong
baseline for this task, only reaping moderate rewards. Using less features for the context causes in-
formation loss, hinders generations of useful ψ, and thus, underperforms the full-feature version by
a margin of 50 return. For completeness, we also compare our methods to heavily tuned baselines
and confirm that the normal MCPO (N = 10) is the best performer (see the details in Appendix
B.6).

5 Related work

A framework for model-free reinforcement learning with policy gradient is approximate policy iter-
ation (API), which alternates between estimating the advantage of the current policy, and updating
the current policy’s parameters to obtain a new policy by maximizing the expected advantage [2, 23].
Theoretical studies have shown that constraining policy updates is critical for API [6, 17, 20, 26].
An early attempt to improve API is Conservative Policy Iteration (CPI), which sets the new policy
as a stochastic mixture of previous greedy policies [6, 16, 25]. Our paper differs from these works
in three aspects: (1) we do not directly set the new policy to the mixture, rather, we use a mixture of
previously found policies (the virtual policy) to define the trust region constraining the new policy
via KL regularization; (2) our mixture can consist of more than 2 modes, and thus using multiple
mixture weights (attention weights); (3) we use the attention network to learn these weights.

Also motivated by Kakade et al. (2002), TRPO extends the theory to general stochastic policies,
rather than just mixture polices, ensuring monotonic improvement by combining maximizing the
approximate expected advantage with minimizing the KL divergence between two consecutive poli-
cies [17]. Arguing that optimizing this way is too conservative and hard to tune, the authors re-
formulate the objective as a constrained optimization problem to solve it with conjugate gradient
and line search. To simplify the implementation of TRPO, Schulman et al. (2017) introduces first-
order optimization methods and code-level improvement, which results in PPO–an API method that
optimizes a clipped surrogate objective using minibatch updates.

Constrained policy improvement can be seen as Expectation-Maximization algorithms where min-
imizing the KL-term corresponds to the Expectation step, which can be off-policy [1] or on-policy
[22]. From the mirror descent perspective, several works also use KL divergence to regularize policy
updates [31, 24, 20]. A recent analysis also points out the advantages of using KL term as a regu-

9

larizer over a hard constraint [7]. Some other works improve PPO with adaptive clip range [27] or
off-policy data [5]. We instead advocate using 2 trust regions and apply our idea to a weaker back-
bone: PPO-penalty. Our method is also different from [5] as we do not use off-policy data/gradients
to update the policy. Overall, our approach shares similarities with them where we also jointly opti-
mize the approximate expected advantage and KL constraint terms for multiple epochs of minibatch
updates. However, we propose a novel dynamic virtual policy to construct the second trust region as
a supplement to the traditional trust region defined by the old or previous policy.

Prior works have promoted different utilization of memory to assist reinforcement learning. Unlike
episodic memory concepts that stores observations across agent’s life [3, 8], the memory buffer used
in this paper stores the weight parameters of the policy network and attention mechanism is used to
query this memory. The proposed memory instead can be viewed as an instance of program memory
[10, 11]. That said, our memory is different from these prior works since our attention is learned
through an auxiliary objective that optimizes the quality of the attended policy (program) with novel
diversity-promoting writing mechanisms.

6 Discussion

We have presented Memory-Constrained Policy Optimization, a new method to regularize each pol-
icy update with two-trust regions with respect to one single old policy and another virtual policy
representing multiple past policies. The new policy is encouraged to stay closer to the region sur-
rounding the policy that performs better. The virtual policy is determined online through a learned
attention to a memory of past policies. Compared to other trust-region optimizations, MCPO shows
better performance in many environments without much hyperparameter tuning.

Limitations Our method introduces several new components and hyperparameters such as N and
β. Due to compute limit, we have not tuned β extensively and thus the reported results may not be
the best performance that our model can achieve. Although we find the default values βmax = 10,
βmin = 0.01 work well across all experiments in this paper, we recommend adjustments if users
apply our method to novel domains.

Negative Societal Impacts Our work aims to improve optimization in RL to reduce the sample
complexity of RL algorithms. This aim is genuine, and we do not think there are immediate harmful
consequences. However, we are aware of potential problems such as unsafe exploration committed
by the agent (e.g. causing accidents) in real-world environments (e.g. self-driving cars). Finally,
malicious users can misuse our method for unethical purposes, such as training harmful RL agents
and robots. This issue is typical for any machine learning algorithm, and we will do our best to
prevent it from our end.

Acknowledgments

This research was partially funded by the Australian Government through the Australian Re-
search Council (ARC). Prof Venkatesh is the recipient of an ARC Australian Laureate Fellowship
(FL170100006).

References
[1] Abbas Abdolmaleki, Jost Tobias Springenberg, Yuval Tassa, Remi Munos, Nicolas Heess, and

Martin Riedmiller. Maximum a posteriori policy optimisation. In International Conference on
Learning Representations, 2018.

[2] Dimitri P Bertsekas and John N Tsitsiklis. Neuro-dynamic programming: an overview. In
Proceedings of 1995 34th IEEE conference on decision and control, volume 1, pages 560–564.
IEEE, 1995.

[3] Charles Blundell, Benigno Uria, Alexander Pritzel, Yazhe Li, Avraham Ruderman, Joel Z
Leibo, Jack Rae, Daan Wierstra, and Demis Hassabis. Model-free episodic control. arXiv
preprint arXiv:1606.04460, 2016.

10

[4] Maxime Chevalier-Boisvert, Lucas Willems, and Suman Pal. Minimalistic gridworld environ-
ment for openai gym. https://github.com/maximecb/gym-minigrid, 2018.

[5] Rasool Fakoor, Pratik Chaudhari, and Alexander J Smola. P3o: Policy-on policy-off policy
optimization. In Uncertainty in Artificial Intelligence, pages 1017–1027. PMLR, 2020.

[6] S. Kakade and J. Langford. Approximately optimal approximate reinforcement learning. In
ICML, 2002.

[7] Nevena Lazic, Botao Hao, Yasin Abbasi-Yadkori, Dale Schuurmans, and Csaba Szepes-
vari. Optimization issues in kl-constrained approximate policy iteration. arXiv preprint
arXiv:2102.06234, 2021.

[8] Hung Le, Thommen Karimpanal George, Majid Abdolshah, Truyen Tran, and Svetha
Venkatesh. Model-based episodic memory induces dynamic hybrid controls. In A. Beygelz-
imer, Y. Dauphin, P. Liang, and J. Wortman Vaughan, editors, Advances in Neural Information
Processing Systems, 2021.

[9] Hung Le, Truyen Tran, and Svetha Venkatesh. Learning to remember more with less memo-
rization. arXiv preprint arXiv:1901.01347, 2019.

[10] Hung Le, Truyen Tran, and Svetha Venkatesh. Neural stored-program memory. In Interna-
tional Conference on Learning Representations, 2019.

[11] Hung Le and Svetha Venkatesh. Neurocoder: General-purpose computation using stored neu-
ral programs. In Proceedings of the 39th International Conference on Machine Learning,
2022.

[12] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval
Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning.
In ICLR (Poster), 2016.

[13] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap,
Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforce-
ment learning. In International conference on machine learning, pages 1928–1937. PMLR,
2016.

[14] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

[15] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

[16] Matteo Pirotta, Marcello Restelli, Alessio Pecorino, and Daniele Calandriello. Safe policy
iteration. In International Conference on Machine Learning, pages 307–315. PMLR, 2013.

[17] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust
region policy optimization. In International conference on machine learning, pages 1889–
1897. PMLR, 2015.

[18] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. arXiv preprint
arXiv:1506.02438, 2015.

[19] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[20] Lior Shani, Yonathan Efroni, and Shie Mannor. Adaptive trust region policy optimization:
Global convergence and faster rates for regularized mdps. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 34, pages 5668–5675, 2020.

11

https://github.com/maximecb/gym-minigrid

[21] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur
Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game
of go without human knowledge. nature, 550(7676):354–359, 2017.

[22] H Francis Song, Abbas Abdolmaleki, Jost Tobias Springenberg, Aidan Clark, Hubert Soyer,
Jack W Rae, Seb Noury, Arun Ahuja, Siqi Liu, Dhruva Tirumala, et al. V-mpo: On-policy
maximum a posteriori policy optimization for discrete and continuous control. In International
Conference on Learning Representations, 2019.

[23] Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour. Policy gradi-
ent methods for reinforcement learning with function approximation. In Advances in neural
information processing systems, pages 1057–1063, 2000.

[24] Manan Tomar, Lior Shani, Yonathan Efroni, and Mohammad Ghavamzadeh. Mirror descent
policy optimization. arXiv preprint arXiv:2005.09814, 2020.

[25] Nino Vieillard, Olivier Pietquin, and Matthieu Geist. Deep conservative policy iteration. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages 6070–6077,
2020.

[26] Nino Vieillard, Bruno Scherrer, Olivier Pietquin, and Matthieu Geist. Momentum in rein-
forcement learning. In International Conference on Artificial Intelligence and Statistics, pages
2529–2538. PMLR, 2020.

[27] Yuhui Wang, Hao He, Xiaoyang Tan, and Yaozhong Gan. Trust region-guided proximal policy
optimization. Advances in Neural Information Processing Systems, 32:626–636, 2019.

[28] Ziyu Wang, Victor Bapst, Nicolas Heess, Volodymyr Mnih, Remi Munos, Koray Kavukcuoglu,
and Nando de Freitas. Sample efficient actor-critic with experience replay. arXiv preprint
arXiv:1611.01224, 2016.

[29] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3-4):279–292,
1992.

[30] Yuhuai Wu, Elman Mansimov, Shun Liao, Roger Grosse, and Jimmy Ba. Scalable trust-region
method for deep reinforcement learning using kronecker-factored approximation. In Proceed-
ings of the 31st International Conference on Neural Information Processing Systems, pages
5285–5294, 2017.

[31] Long Yang, Gang Zheng, Haotian Zhang, Yu Zhang, Qian Zheng, Jun Wen, and Gang Pan.
Policy optimization with stochastic mirror descent. arXiv preprint arXiv:1906.10462, 2019.

12

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] see Sec. 6
(c) Did you discuss any potential negative societal impacts of your work? [Yes] see Sec. 6
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Appendix
C

(b) Did you include complete proofs of all theoretical results? [Yes] See Appendix C
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] Datasets are
public, cited in the paper. The details of the experiment are given in Appendix B to
reproduce the results. The code will be released upon acceptance.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Sec. 4 and Appendix B

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] See result tables

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Appendix B

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes] See Appendix B. They are all public,

e.g. Apache License 2.0
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [No]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [No]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

Appendix

A Method Details

A.1 The attention network

The attention network is implemented as a feedforward neural network with one hidden layer:

• Input layer: 12 units
• Hidden layer: N units coupled with a dropout layer p = 0.5

• Output layer: N units, softmax activation function

N is the capacity of policy memory. The 12 features of the input vcontext is listed in Table 4.

Now we explain the motivation behind these feature design. From these three policies, we tried
to extract all possible information. The information should be cheap to extract and dependent on
the current data, so we prefer features extracted from the outputs of these policies (value, entropy,
distance, return, etc.). Intuitively, the most important features should be the empirical returns, values
associated with each policy and the distances, which gives a good hint of which virtual policy will
yield high performance (e.g., a virtual policy that is closer to the policy that obtained high return and
low value loss).

A.2 The advantage function

In this paper, we use GAE [18] as the advantage function for all models and experiments

Ât =
1

Nactor

Nactor∑
i

T−t−1∑
k=0

(γλ)
k (
Vtarget − V

(
sit+k

))
where γ is the discounted factor andNactor is the number of actors. Vtarget = rit+k+γV

(
sit+k+1

)
.

Note that Algo. 1 illustrates the procedure for 1 actor. In practice, we use Nactor depending on the
tasks.

A.3 The objective function

Following [19], our objective function also includes value loss and entropy terms. This is applied to
all of the baselines. For example, the complete objective function for MCPO reads

L = LMCPO − c1Êt (Vθ (st)− Vtarget (st))2

+ c2Êt [− log (πθ (·|st))]
where c1 and c2 are value and entropy coefficient hyperparameters, respectively. Vθ is the value
network, also parameterized with θ.

B Experimental Details

B.1 Baselines and tasks

All baselines in this paper share the same setting of policy and value networks. Except for TRPO, all
other baselines use minibatch training. The only difference is the objective function, which revolves
around KL and advantage terms. We train all models with Adam optimizer. We summarize the
policy and value network architecture in Table 5.

The baselines ACKTR, PPO1, TRPO2 use available public code (Apache or MIT License). They are
Pytorch reimplementation of OpenAI’s stable baselines, which can reproduce the original perfor-
mance relatively well. For MDPO, we refer to the authors’ source code3 to reimplement the method.

1https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail
2https://github.com/ikostrikov/pytorch-trpo
3https://github.com/manantomar/Mirror-Descent-Policy-Optimization

14

https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail
https://github.com/ikostrikov/pytorch-trpo
https://github.com/manantomar/Mirror-Descent-Policy-Optimization

Dimension Feature Meaning
1 D (θ, ψold) “Distance” between θ and ψold
2 D (θold, ψold) “Distance” between θold and ψold
3 D (θold, θ) “Distance” between θold and θ
4 Êt [Rt (ψold)] Approximate expected advantage of ψold
5 Êt [Rt (θold)] Approximate expected advantage of θold
6 Êt [Rt (θ)] Approximate expected advantage of θ
7 Êt [− log (πψold (·|st))] Approximate entropy of ψold
8 Êt [− log (πθold (·|st))] Approximate entropy of θold
9 Êt [− log (πθ (·|st))] Approximate entropy of θ

10 Êt (Vψold (st)− Vtarget (st))
2 Value loss of ψold

11 Êt (Vθold (st)− Vtarget (st))
2 Value loss of θold

12 Êt (Vθ (st)− Vtarget (st))2 Value loss of θ

Table 4: Features of the context vector.

Input type Policy/Value networks

Vector 2-layer feedforward
net (tanh, h=64)

Image
3-layer ReLU CNN with

kernels {32/8/4, 64/4/2, 32/3/1}+2-layer
feedforward net (ReLU, h=512)

Table 5: Network architecture shared across baselines.

For VMPO, we refer to this open source code4 to reimplement the method. We implement KL Fixed
and KL Adaptive, using objective function defined in Sec. 2.

We use environments from Open AI gyms 5, which are public and using The MIT License. Mujoco
environments use Mujoco software6 (our license is academic lab). Table 6 lists all the environments.

B.2 Details on Classical Control

For these tasks, all models share hyperparameters listed in Table 8. Besides, each method has its
own set of additional hyperparameters. For example, PPO, KL Fixed and KL Adaptive have ε, β
and dtarg, respectively. These hyperparameters directly control the conservativeness of the policy

4https://github.com/YYCAAA/V-MPO_Lunarlander
5https://gym.openai.com/envs/
6https://www.roboti.us/license.html

Tasks Continuous Gym
action category

Pendulum-v0
X

Classical
LunarLander-v2 Box2dBipedalWalker-v3 �

Unlock-v0
X MiniGridUnlockPickup-v0

MuJoCo tasks (v2): HalfCheetah
� MuJoCoWalker2d, Hopper, Ant

Humanoid, HumanoidStandup
Atari games (NoFramskip-v4):

X AtariBeamrider, Breakout
Enduro, Gopher

Seaquest, SpaceInvaders
BipedalWalkerHardcore-v3 � Box2d

Table 6: Tasks used in the paper.

15

https://github.com/YYCAAA/V-MPO_Lunarlander
https://gym.openai.com/envs/
https://www.roboti.us/license.html

Model Pendulum LunarLander BWalker
1M 1M 5M

KL Adaptive (dtarg = 0.003) -407.74±484.16 238.30±34.07 206.99±5.34
KL Adaptive (dtarg = 0.01) -147.52±9.90 254.26±19.43 247.70±14.16
KL Adaptive (dtarg = 0.03) -601.09±273.18 246.93±12.57 259.80±6.33
KL Fixed (β = 0.01) -1051.14±158.81 247.61±19.79 221.55±38.64
KL Fixed (β = 0.1) -464.29±426.27 256.75±20.53 263.56±10.04
KL Fixed (β = 1) -136.40±4.49 192.62±32.97 215.13±13.29
PPO (clip ε = 0.1) -282.20±243.42 242.98±13.50 205.07±19.13
PPO (clip ε = 0.2) -514.28±385.34 256.88±20.33 253.58±7.49
PPO (clip ε = 0.3) -591.31±229.32 259.93±22.52 260.51±17.86
MDPO (β0 = 0.5) -136.45±8.21 247.96±4.74 251.18±29.10
MDPO (β0 = 1) -139.14±10.32 207.96±43.86 245.27±10.47
MDPO (β0 = 2) -135.52±5.28 227.76±16.96 226.80±15.67
VMPO (α0 = 0.1) -144.51±7.04 201.87±29.48 236.57±10.62
VMPO (α0 = 1) -139.50±5.54 212.85±43.35 238.82±11.11
VMPO (α0 = 5) -296.48±213.06 222.13±35.55 164.40±40.36
MCPO (N = 5) -133.42±4.53 262.23±12.47 265.80±5.55
MCPO (N = 10) -146.88±3.78 263.04±11.48 266.26±8.87
MCPO (N = 40) -135.57±5.22 267.19±13.42 249.51±12.75

Table 7: Mean and std. over 5 runs on classical control tasks (with number of training environment
steps). Bold denotes the best mean. Underline denotes good results (if exist), statistically indifferent
from the best in terms of Cohen effect size less than 0.5.

update for each method. For MDPO, β is automatically reduced overtime through an annealing
process from 1 to 0 and thus should not be considered as a hyperparameter. However, we can still
control the conservativeness if β is annealed from a different value β0 rather 1. We realize that
tuning β0 helped MDPO (Table 7). We quickly tried with several values β0 ranging from 0.01 to 10
on Pendulum, and realize that only β0 ∈ {0.5, 1, 2} gave reasonable results. Thus, we only tuned
MDPO with these β0 in other tasks. For VMPO there are many other hyperparameters such as η0,
α0, εη and εα. Due to limited compute, we do not tune all of them. Rather, we only tune α0-the initial
value of the Lagrange multiplier that scale the KL term in the objective function. We refer to the
paper’s and the code repository’s default values of α0 to determine possible values α0 ∈ {0.1, 1, 5}.
For our MCPO, we can tune several hyperparameters such as N , βmin, and βmax. However, for
simplicity, we only tune N ∈ {5, 10, 40} and fix βmin = 0.01 and βmax = 10.

On our machines using 1 GPU Tesla V100-SXM2, we measure the running time of MCPO with
different N compared to PPO on Pendulum task, which is reported in Table 9. As N increases, the
running speed of MCPO decreases. For this reason, we do not test with N > 40. However, we
realize that with N = 5 or N = 10, MCPO only runs slightly slower than PPO. We also realize that
the speed gap is even reduced when we increase the number of actorsNactor as in other experiments.
In terms of memory usage, maintaining a policy memory will definitely cost more. However, as our
policy, value and attention networks are very simple. The maximum storage even for N = 40 is less
than 5GB.

In addition to the configurations reported in Table 1, for KL Fixed and PPO, we also tested with
extreme values β = 10 and ε ∈ {0.5, 0.8}. Figs. 7, 8 and 9 visualize the learning curves of all
configurations for all models.

B.3 Details on MiniGrid Navigation

Based on the results from the above tasks, we pick the best signature hyperparameters for the models
to use in this task as in Table 10. In particular, for each model, we rank the hyperparameters per task
(higher rank is better), and choose the one that has the maximum total rank. For hyperparameters
that share the same total rank, we prefer the middle value. The other hyperparameters for this task
is listed in Table 8.

16

Hyperparameter Pendulum LunarLander BipedalWalker MiniGrid BipedalWaker
Hardcore

Horizon T 2048 2048 2048 2048 2048
Adam step size 3× 10−4 3× 10−4 3× 10−4 3× 10−4 3× 10−4

Num. epochs K 10 10 10 10 10
Minibatch size B 64 64 64 64 64

Discount γ 0.99 0.99 0.99 0.99 0.99
GAE λ 0.95 0.95 0.95 0.95 0.95

Num. actors Nactor 4 4 32 4 128
Value coefficient c1 0.5 0.5 0.5 0.5 0.5

Entropy coefficient c2 0 0 0 0 0

Table 8: Network architecture shared across baselines on Pendulum, LunarLander, BipedalWalker,
MiniGrid and BipedalWaker Hardcore

Model Speed (env. steps/s)
MCPO (N=5) 1,170

MCPO (N=10) 927
MCPO (N=40) 560

PPO 1,250
Table 9: Computing cost of MCPO and PPO on Pendulum.

B.4 Details on Mujoco

For shared hyperparameters, we use the values suggested in the PPO’s paper, except for the number
of actors, which we increase to 16 for faster training as our models are trained for 10M environment
steps (see Table 11).

For the signature hyperparameter of each method, we select some of the reasonable values. For
PPO, the authors already examined with ε ∈ {0.1, 0.2, 0.3} on the same task and found 0.2 the best.
This is somehow backed up in our previous experiments where we did not see major difference in
performance between these values. Hence, seeking for other ε rather than the optimal ε = 0.2, we ran
our PPO implementation with ε ∈ {0.2, 0.5, 0.8}. For TRPO, the authors only used the KL radius
threshold δ = 0.01, which may be already the optimal hyperparameter. Hence, we only tried δ ∈
{0.005, 0.01}. The results showed that δ = 0.005 always performed worse. For MCPO and Mean
ψ, we only ran with extreme N ∈ {5, 40}. For MDPO, we still tested with β0 ∈ {0.5, 1, 2}. Full
learning curves with different hyperparameter are reported in Fig. 10. Learning curves including
TRGPPO7 are reported in Fig. 11

B.5 Details on Atari

For shared hyperparameters, we use the values suggested in the PPO’s paper, except for the number
of actors, which we increase to 32 for faster training (see Table 11). For the signature hyperparam-
eter of the baselines, we used the recommended value in the original papers. For MCPO, we use
N = 10 to balance between running time and performance. Table 12 shows the values of these
hyperparameters.

7We use the authors’ source code https://github.com/wangyuhuix/TRGPPO using default configura-
tion. Training setting is adjusted to follow the common setting as for other baselines (see Table 11).

0 25K 50K 75K 100K
S te p

0 .0

0 .5

A
v

g
.

R
e

tu
rn

0.9 0.9
Un lock

0 250K 500K 750K 1M
S te p

0 .0

0 .5

Un lockPicku p

KL Ad a p t ive
KL F ixe d
M CPO (Ours)
M DPO
PPO
VM PO

Figure 3: Unlock (left) and UnlockPickup (right)’s learning curves (mean and std. over 10 runs).

17

https://github.com/wangyuhuix/TRGPPO

Model Chosen hyperparameter
KL Adaptive dtarg = 0.01

KL Fixed β = 0.1
PPO ε = 0.2

MDPO β0 = 0.5
VMPO α0 = 1
MCPO N = 10

Table 10: Signature hyperparameters used in MiniGrid tasks.

Hyperparameter Mujoco Atari

Horizon T 2048 128
Adam step size 3× 10−4 2.5× 10−4

Num. epochs K 10 4
Minibatch size B 32 32

Discount γ 0.99 0.99
GAE λ 0.95 0.95

Num. actors Nactor 16 32
Value coefficient c1 0.5 1.0

Entropy coefficient c2 0 0.01
Table 11: Network architecture shared across baselines on Mujoco and Atari

We also report the average normalized human score (mean and median) of the models over 6 games
in Table 3. As seen, MCPO is significantly better than other baselines in terms of both mean and
median normalized human score. We also report full learning curves of models and normalized
human score including TRGPPO in 9 games in Fig. 5 and Table 3, respectively.

Fig. 5 visualizes the learning curves of the models. Regardless of our regular tuning, VMPO per-
forms poorly, indicating that this method is unsuitable or needs extensive tuning to work for low-
sample training regime. ACKTR, works extremely well on certain games (Breakout and Seaquest),
but shows mediocre results on others (Enduro, BeamRider), overall underperforming MCPO. PPO
is always similar or inferior to MCPO on this testbed. Our MCPO always demonstrates competitive
results, outperforming all other models in 4 games, especially on Enduro and Gopher, and showing
comparable results with that of the best model in the other 2 games.

To verify whether MCPO can maintain its performance over longer training, we examine Atari
training for 40 million frames. As shown in Fig. 6, MCPO is still the best performer in this training
regime.

B.6 Details on ablation study

In this section, we give more details on the ablated baselines. Unless state otherwise, the baseline
use N = 10.

• No ψ We only changed the objective to

L1 (θ) = Êt
[
τt (θ) Ât

]
− βÊt [KL [πθold (·|st) , πθ (·|st)]] (7)

Model Chosen hyperparameter
PPO ε = 0.2

ACKTR δ = 0.01
VMPO α0 = 5
MCPO N = 10

Table 12: Signature hyperparameters used in Atari tasks.

18

0 5M 10M
Step

0.550

0.575

0.600

0.625

0.650

t

Figure 4: HalfCheetah: Average αt over training time (mean and std. over 3 runs). The training
does not use learning rate decay to ensure that ψ and θold do not converge to the same policy towards
the end of training.

1

2

3

A
vg

.
R

e
tu

rn

1e3 BeamRider

0

2

4

1e2 Breakout

0

5

1e2 Enduro

1

2

3

A
vg

.
R

e
tu

rn

1e3 Gopher

0.5

1.0

1.5

1e3 Seaquest

2.5

5.0

7.5
1e2 SpaceInvaders

0 2M 5M 7M 10M
Step

0

2

4

A
vg

.
R

e
tu

rn

1e3 Qbert

0 2M 5M 7M 10M
Step

0.0

0.5

1.0

1e3 BankHeist

0 2M 5M 7M 10M
Step

1.0

0.5

1e1 IceHockey

ACKTR MCPO PPO TRGPPO VMPO

Figure 5: Atari games: learning curves (mean and std. over 5 runs) across 10M training steps.

2

4

6

8

A
v

g
.

R
e

tu
rn

1 e 3 Be a m Rid e r

0

2

4

6
1 e 2 Br e a kou t

0

1

2

3

1 e 3 En d u r o

0 10M 20M 30M 40M
S te p

0

1

2

3

4

5

A
v

g
.

R
e

tu
rn

1 e 4 Gop h e r

0 10M 20M 30M 40M
S te p

0 .5

1 .0

1 .5

1 e 3 S e a q u e s t

0 10M 20M 30M 40M
S te p

0 .5

1 .0

1 .5

2 .0

2 .5

1 e 3 S p a ce In va d e r s

ACKTR M CPO PPO

Figure 6: Atari games: learning curves (mean and std. over 5 runs) across 40M training steps.

19

1250

1000

750

500

250

KL Adaptive

d=0.003

d=0.01

d=0.03

KL Fixed

=0.01

=0.1

=1

=10

MCPO (Ours)

N=10

N=40

N=5

0 200K 400K 600K 800K 1M

1250

1000

750

500

250

MDPO

0=0.5

0=1

0=2

0 200K 400K 600K 800K 1M

PPO

clip=0.1

clip=0.2

clip=0.3

clip=0.5

clip=0.8

0 200K 400K 600K 800K 1M

VMPO

0=0.1

0=1

0=5

Figure 7: Pendulum-v0: learning curves (mean and std. over 5 runs) across 1M training steps.

where β is still determined by the β-switching rule. This baseline corresponds to setting
α = 0

• Fixed α = 0.5 We manually set α = 0.5 across training. This baseline uses both old and
virtual policy’s trust regions but with fixed balanced coefficient.

• Fixed α = 1.0 We manually set α = 1.0 across training. This baseline only uses virtual
policy’s trust region.

• Annealed β We determine the β in Eq. 3 by MDPO’s annealing rule, a.k.a, βi = 1.0 −
i

Ttotal
where Ttotal is the total number of training policy update steps and i is the current

update step. We did not test with other rules such as fixed or adaptive β as we realize that
MDPO is often better than KL Fixed and KL Adaptive in our experiments, indicating that
the annealed β is a stronger baseline.

• Adaptive β We adopt adaptive β, determined by the rule introduced in PPO paper (adaptive
KL) with dtarg = 0.03.

• Frequent writing We add a new policy toM at every policy update step.
• Uniform writing Inspired by the uniform writing mechanism in Memory-Augmented Neu-

ral Networks [9], we add a new policy to M at every interval of 10 update steps. The
interval size could be tuned to get better results but it would require additional effort, so we
preferred our diversity-promoting writing over this one.

• Sparse writing Uniform writing with interval of 100 update steps.
• Mean ψ The virtual policy is determined as

ψ =

|M|∑
j

θj (8)

• Half feature We only use features from 1 to 6 listed in Table 4.

The other baselines including KL Adaptive, KL Fixed, MDPO, PPO, and VMPO are the same as in
B.2. The full learning curves of all models with different hyperparameters are plotted in Fig. 2.

C Theoretical analysis of MCPO

In this section, we explain the design of our objective function L1 and L2. We want to emphasize
that the two trust regions (corresponding to θold and ψ) are both important for MCPO’s convergence.
Eq. 3 needs to include the old policy’s trust region because, in theory, constraining policy updates
using the last sampling policy’s trust region guarantees monotonic improvement [17]. However, in
practice, the old policy can be suboptimal and may not induce much improvement. This motivates us
to employ an additional trust region to regulate the update in case the old policy’s trust region is bad.
In doing so, we still want to maintain the theoretical property of trust-region update while enabling a
more robust optimization that works well even when the ideal setting for theoretical assurance does
not hold.

20

200

100

0

100

200

KL Adaptive

d=0.003

d=0.01

d=0.03

KL Fixed

=0.01

=0.1

=1

=10

MCPO (Ours)

N=10

N=40

N=5

0 200K 400K 600K 800K 1M

200

100

0

100

200

MDPO

0=0.5

0=1

0=2

0 200K 400K 600K 800K 1M

PPO

clip=0.1

clip=0.2

clip=0.3

clip=0.5

clip=0.8

0 200K 400K 600K 800K 1M

VMPO

0=0.1

0=1

0=5

Figure 8: LunarLander-v2: learning curves (mean and std. over 5 runs) across 5M training steps.

100

0

100

200

300
KL Adaptive

d=0.003

d=0.01

d=0.03

KL Fixed

=0.01

=0.1

=1

=10

MCPO (Ours)

N=10

N=40

N=5

0 1M 2M 3M 4M 5M

100

0

100

200

300
MDPO

0=0.5

0=1

0=2

0 1M 2M 3M 4M 5M

PPO

clip=0.1

clip=0.2

clip=0.3

clip=0.5

clip=0.8

0 1M 2M 3M 4M 5M

VMPO

0=0.1

0=1

0=5

Figure 9: BipedalWalker-v3: learning curves (mean and std. over 5 runs) across 1M training steps.

0

5000

A
vg

.
R

e
tu

rn
H

a
lf

ch
e
e
ta

h

TRPO

=0.005

=0.01

Mean

N=40

N=5

MCPO (Ours)

N=40

N=5

MDPO

0=0.5

0=1

0=2

Step

PPO

clip=0.2

clip=0.5

clip=0.8

TRG

0

2500

5000

A
vg

.
R

e
tu

rn
W

a
lk

e
r2

d

=0.005

=0.01

N=40

N=5

N=40

N=5

0=0.5

0=1

0=2

Step

clip=0.2

clip=0.5

clip=0.8

TRG

0

2000

4000

A
vg

.
R

e
tu

rn
H

o
p

p
e
r

=0.005

=0.01

N=40

N=5

N=40

N=5

0=0.5

0=1

0=2

Step

clip=0.2

clip=0.5

clip=0.8

TRG

0

2500

5000

A
vg

.
R

e
tu

rn
A

n
t

=0.005

=0.01

N=40

N=5

N=40

N=5
0=0.5

0=1

0=2

Step

clip=0.2

clip=0.5

clip=0.8

TRG

2500

5000

A
vg

.
R

e
tu

rn
H

u
m

a
n

o
id

=0.005

=0.01

N=40

N=5

N=40

N=5
0=0.5

0=1

0=2

Step

clip=0.2

clip=0.5

clip=0.8

TRG

0 5M 10M

100000

200000

A
vg

.
R

e
tu

rn
H

u
m

a
n

o
id

S
ta

n
d

u
p

=0.005

=0.01

0 5M 10M

N=40

N=5

0 5M 10M

N=40

N=5

0 5M 10M

0=0.5

0=1

0=2

0 5M 10M

clip=0.2

clip=0.5

clip=0.8

TRG

Figure 10: Mujoco: learning curves (mean and std. over 5 runs) across 10M training steps.

21

0

2

4

6
A

vg
.

R
e
tu

rn

1e3 HalfCheetah

0

2

4

1e3 Walker2d

0

1

2

3

1e3 Hopper

0 2M 4M 6M 8M 10M
Step

0

2

4

A
vg

.
R

e
tu

rn

1e3 Ant

0 2M 4M 6M 8M 10M
Step

0

2

4

6

1e3 Humanoid

0 2M 4M 6M 8M 10M
Step

0.5

1.0

1.5

2.0
1e5 HumanoidStandup

MCPO (Ours)
MDPO

Mean
PPO

TRGPPO
TRPO

Figure 11: Mujoco: learning curves (mean and std. over 5 runs) across 10M training steps.

It should be noted that constraining with a policy different from the sampling one would break the
monotonic improvement property of trust-region update. Fortunately, our theory proves that using
the two trust regions as defined in our paper helps maintain the monotonic improvement property.
This is an important result since if you use an arbitrary virtual policy to form the second trust region
(unlike the one we suggest in this paper), the property may not hold.

Similar to [17], we can construct a theoretically guaranteed version of our practical objective func-
tions that ensures monotonic policy improvement.

First, we explain the design of L1 by recasting L1 as

L1θold (θ) = Lθold (θ)

− C1D
max
KL (θold, θ)

− C2D
max
KL (ψ, θ)

where Lθold (θ) = η (πθold) +
∑
s ρπθold (s)

∑
a πθ (a|s)Aπθold (s, a)–the local approximation

to the expected discounted return η (θ), Dmax
KL (a, b) = maxsKL [πa (·|s) , πb (·|s)], C1 =

4maxs,a|Aπ(s,a)|γ
(1−γ)2 and C2 > 0. Here, ρπθold is the (unnormalized) discounted visitation frequen-

cies induced by the policy πθold .

As the KL is non-negative, L1θold (θ) ≤ Lθold (θ)−C1D
max
KL (θold, θ). According to [17], the RHS

is a lower bound on η (θ), so L1 is also a lower bound on η (θ) and thus, it is reasonable to maximize
the practical L1, which is an approximation of L1θold .

Next, we show that by optimizing both L1 and L2, we can interpret our algorithm as a monotonic
policy improvement procedure. As such, we need to reformulate L2 as

L2θold (ψ) = Lθold (ψ)− C1D
max
KL (θold, ψ)

Note that compared to the practical L2 (as defined in the main paper on page 5), we have introduced
here an additional KL term, which means we need to find ψ that is close to θold and maximizes the
approximate advantage Lθold (ψ). As we maximize L2θold (ψ), the maximizer ψ satisfies

L2θold (ψ) ≥ L2θold (θold) = Lθold (θold)

We also have

22

η (θ) ≥ L1θold (θ) (9)
η (θold) = Lθold (θold) ≤ L2θold (ψ)

= Lθold (ψ)− C1D
max
KL (θold, ψ)

= L1θold (ψ) (10)

Subtracting both sides of Eq. 10 from Eq. 9 yields

η (θ)− η (θold) ≥ L1θold (θ)− L1θold (ψ)

Thus by maximizing L1θold (θ), we guarantee that the true objective η (θ) is non-decreasing.

Although the theory suggests that the optimal L2 could be L∗2 =

Êt [Rt (ψϕ)− C1KL [πθold (·|st) , πψ (·|st)]], it would require additional tuning of C1. More
importantly, optimizing an objective in form of L∗2 needs a very small step size, and could converge
slowly. Hence, we simply discard the KL term and only optimize L2 = Êt [Rt (ψϕ)] instead.
Empirical results show that using this simplification, MCPO’s learning curves still generally
improve monotonically over training time.

23

	Introduction
	Background: Policy Optimization with Trust Region
	Memory-Constrained Policy Optimization
	Virtual Policy
	Policy Optimization with Two Trust Regions

	Experimental results
	Classical Control
	Navigation
	Mujoco
	Atari Games
	Ablation Study

	Related work
	Discussion
	Method Details
	The attention network
	The advantage function
	The objective function

	Experimental Details
	Baselines and tasks
	Details on Classical Control
	Details on MiniGrid Navigation
	Details on Mujoco
	Details on Atari
	Details on ablation study

	Theoretical analysis of MCPO

