
Large Language Model Prompting With Episodic Memory
Dai Doa,*, Quan Tranb, Svetha Venkatesha and Hung Lea

aApplied AI Institute, Deakin University, Australia
bServiceNow Research, USA

Abstract. Prompt optimization is essential for enhancing the per-
formance of Large Language Models (LLMs) in a range of Natural
Language Processing (NLP) tasks, particularly in scenarios of few-
shot learning where training examples are incorporated directly into
the prompt. Despite the growing interest in optimizing prompts with
few-shot examples, existing methods for prompt optimization are
often resource-intensive or perform inadequately. In this work, we
propose PrOmpting with Episodic Memory (POEM), a novel prompt
optimization technique that is simple, efficient, and demonstrates
strong generalization capabilities. We approach prompt optimization
as a Reinforcement Learning (RL) challenge, using episodic memory
to archive combinations of input data, permutations of few-shot exam-
ples, and the rewards observed during training. In the testing phase,
we optimize the sequence of examples for each test query by select-
ing the sequence that yields the highest total rewards from the top-k
most similar training examples in the episodic memory. Our results
show that POEM outperforms recent techniques like TEMPERA and
RLPrompt by over 5.3% in various text classification tasks. Further-
more, our approach adapts well to broader language understanding
tasks, consistently outperforming conventional heuristic methods for
ordering examples.

1 Introduction

The recent rapid advancements in Language Models (LMs) have un-
derscored the increasing significance of utilizing pre-trained language
models, especially when paired with appropriate prompts, as evi-
denced by seminal works [4, 1, 5, 9]. As Language Models increase
in parameter count, they unveil new capabilities such as In-Context
Learning (ICL) [4], enabling Large Language Models (LLMs) to
tackle tasks with just a few example demonstrations in the prompt.
ICL offers a data-efficient approach for performing Natural Language
Processing (NLP) tasks, achieving remarkable few-shot performances
across many downstream tasks [20, 10, 22, 23].

However, the prompt content and ICL examples necessitate meticu-
lous tuning to ensure consistent performance across various tasks. To
optimize prompt contents, early attempts focus on tuning the embed-
dings via gradient descent ("soft prompts", [18, 23]). Unfortunately,
soft prompts require gradients from LLMs to construct prompts and
often face challenges with interpretability and quality [13, 18]. Addi-
tionally, they struggle to handle ICL examples within the prompt, and
thus can only be used for zero-shot prompting. Consequently, the cur-
rent state-of-the-art has shifted towards discrete prompt optimization
[7, 44], which enhances interpretability and permits ICL optimization.

∗ Corresponding Author. Email: v.do@deakin.edu.au.

Selecting the right in-context examples and their orders in prompts
is crucial for ICL optimization [22]. This task is challenging due
to the vast array of possible combinations and diverse instructions
[26]. Furthermore, the arrangement of these examples may introduce
biases, including majority, recency, and primacy biases [26, 46, 28].
Although reasonable example selection can be achieved through near-
est neighbor retrieval [22], determining the optimal order of examples
remains an unresolved research challenge.

Initial efforts employed heuristic rules to rank examples in descend-
ing or ascending order based on their similarity to the test instance
[22, 26]. More recent work attempts to use LLMs as black-box opti-
mizer [37, 29], calibration [46] or applies Reinforcement Learning
(RL)-based method for generating prompts with ICL examples [44].

Discrete prompt optimization presents its own set of challenges.
Heuristic methods lack optimization principles, leading to success in
some cases but failure in others [22]. Black-box methods are guided-
optimization and gradient-free. However, they are query-agnostic,
thus failing to incorporate any query-related context into the prompt.
This leads to downstream performance degradation [41]. Moreover,
they often require additional LLM computation for prompt generation,
resulting in extensive resource usage [42, 30, 47]. Although using
RL-based methods for prompt editing sequentially presents a potential
solution that does not require extra LLM for prompt generation [44],
their slow convergence and intrinsic complexity hinder effectiveness.

In this paper, we propose a novel and efficient memory-based ap-
proach to optimize the order of ICL examples within LLM prompts.
Drawing inspiration from the rapid, model-free, and instance-based
learning evident in the hippocampus region of the human brain [17],
our method eliminates the necessity for complex reinforcement learn-
ing optimization while being more reliable than heuristic methods
through performance-driven optimization. Leveraging episodic con-
trol mechanisms in reinforcement learning [3, 14, 16], we formulate
each evaluation of training data as an episode and utilize an episodic
memory to store the performance of any combination of the training
data and ICL orderings. By sampling and evaluating certain training
inputs and ICL order pairs, we avoid exhaustive searches across all
data-ICL order combinations, which is particularly beneficial when
LLM evaluation is costly. During testing, this memory serves as a
non-parametric nearest-neighbors model, utilizing the recorded per-
formance of similar training data to determine the optimal order for
the testing data.

To ensure the robust generalization of our episodic memory, we
devise specialized representations for both the text input and the
ordering of ICL examples. Specifically, we encode the input using
the last hidden states of a pre-trained language model, ensuring high-
quality similarity-based retrieval during testing. Moreover, directly

Example
Selection

Action
Encoding

State
Encoding

Example 1

Example 2

Example 3

Example m

Prompt Downstream LM TESTING

Memory
Writing

states actions : rewards

Downstream LM

Prompt

Memory
Reading

State
Encoding

Example 1

Example 2

Example 3

Example m

Example
Selection

TRAINING

Figure 1. POEM Architecture. Training (left): In this phase, we select examples from the in-context dataset Dic. The training query and the ICL example
ordering are encoded into s and a, respectively, and are used to construct a prompt for each training query. Then, we receive a reward r by feeding the prompt to
the downstream language model (LM), and we store the state, action, and reward in memory M using Memory Writing (Eq. 9). Testing (right): During this
phase, for each testing query st, we conduct Memory Reading using nearest neighbor estimation to get the action with the highest estimated value (Eq. 10). We
then build the prompt for the test query by producing the ICL examples that correspond to the best ordering action at.

encoding the permutation as a sequence of ICL examples would
result in a vast search space. Suppose there are M training samples
in total and we can select m examples for each prompt, we would
have M !

(M−m)!
possible ICL arrangements. Instead, we represent the

ordering as a permutation of the similarity rank of the in-context
examples. Specifically, given a specific ordering of ICL examples, we
(1) gauge the similarity between the examples to the testing input, (2)
assign a rank to each example based on the similarity, and (3) encode
the ICL ordering as the sequence of the ranks. Our encoding operates
within the similarity rank space rather than the text space, effectively
reducing the search space from M !

(M−m)!
to m!. More importantly, this

approach also encourages generalization as the permutation focuses
solely on the arrangement of the example rank rather than specific
content.

In summary, we propose POEM, a method that optimizes in-context
example ordering during test time using an Episodic Memory. It uti-
lizes a similarity ranking to encode example orders based on their
proximity to the test instance. In our few-shot classification experi-
ments across seven datasets, POEM outperforms TEMPERA on six
datasets and surpasses RLPrompt on all, with a significant perfor-
mance margin of 13.4%. For tasks requiring larger LLMs, such as
Commonsense Reasoning and Question Answering, POEM consis-
tently outperforms heuristic baselines across all four LLMs tested.

2 Method

2.1 Problem Formulation

Few-shot text classification. We follow the standard few-shot set-
ting for downstream tasks of language models [4]. In this setup, a
pretrained language model L is paired with a task-specific dataset
D, where Y represents the label space. Y may vary in form; it can
be categorical, as in classification tasks, or sequential, as in question
answering and commonsense reasoning tasks. For classification tasks,
we randomly assemble a dataset of L = g ∗ G samples, with g as the
samples per label and G as the total labels. In cases without categori-

cal labels, we randomly sample L instances from D. This forms the
training dataset, denoted as Dtrain = {xi, yi}Li=1, while a separate
hold-out set Dtest is reserved for evaluation.

In-context Learning. Following GPT-3 paper [4], In-context
Learning is a paradigm that allows language models to learn tasks
given only a few examples in the form of demonstration. Given a
test sentence xtest, template-based construction Ψ, along with an
optional task description tdesc and a set of in-context examples
T = {xi, yi}mi=1, denoting Γ as the prompt construction function, we
can formulate an input prompt p as follows:

p = Γ (tdesc, T , xtest)

= tdesc ⊕Ψ(x1, y1)⊕ · · · ⊕Ψ(xm, ym)⊕Ψ(xtest, ∗)
(1)

where⊕ is the concatenate function and m is the number of in-context
examples for each prompt. In line with the few-shot setting [44, 7],
we consider an in-context set of M samples, denoted as Dic ∈ D,
excluding the few-shot training data. The in-context examples will be
sampled only from this set.

In-context learning allows the construction of the task’s output
distribution pLM (y|x, p), where x and y are string input and output,
respectively. This approach enables in-context learning to actively
influence the selection and arrangement of the demonstration set T
within the input prompt p, thereby refining its capacity for effective
optimization.

Reinforcement Learning Formulation. We formulate in-context
prompt optimization as an RL problem where a state s = E (x)
is the embedding of the input x, where E is a pre-trained encoder.
During training, given a set of m in-context examples, the RL agent
selects one of the possible permutations as its action a from the
action space A. We then construct the prompt p using the default
task description/instruction (if any), combined with the a-ordered
in-context examples, and query it to the downstream LM to get the
reward r. The goal of the agent is to learn a policy that maximizes
the episodic return Rt =

∑H−t
h=0 rt+h, where H is the time step at

Algorithm 1 In-context examples order optimization with Episodic
Memory
Require: Language model L, State encoder E , Training set Dtrain,

Evaluation set Dtest, In-context set Dic, Number of iterations
N , Episodic MemoryM, Number of neighbors k, Task descrip-
tion tdesc, Template transformation Ψ, Number of in-context
examples per prompt m, Prompt construction function Γ

1: InitializeM = ∅
2: Training:
3: for episode n = 1 to N do
4: Random sample batch B ∼Dtrain

5: for x ∈ B do
6: Receive state s = E (x)
7: Receive in-context examples Ts = Ω(s,Dic)
8: Select permutation a← ϵ-greedy policy usingM (Eq. 10)
9: Reorder the in-context examples set T a

s = ∇ (Ts, a)
10: Get prompt p = Γ (tdesc,Ψ(T a

s))
11: Receive reward r
12: UpdateM using Memory writing with r (Eq. 9)
13: endfor
14: endfor
15: Testing:
16: for xt ∈ Dtest do
17: Receive state st = E (xt)
18: Receive in-context example set Tst = Ω(st,Dic)

19: Obtain M̂ (st, a) with Memory reading (Eq. 10)
20: Obtain at via Eq. 11
21: Reorder the in-context examples set T at

st = ∇ (Tst , at)
22: Get prompt p = Γ (tdesc,Ψ(T at

st))
23: Get prediction ŷ = L (xt, p)

24: endfor

which the episode ends. To simplify the formulation, our episode
consists of only one step, during which the sole action is selecting the
permutation of the in-context examples.

2.2 Prompting with Episodic Memory

In this section, we present the architecture of our episodic memory.
The memory is structured as a dictionary, storing the embeddings
of training sentences (states) as keys. Each key’s value is another
dictionary, mapping a permutation (action) to its respective reward.
We denote a key by si, and for each key, aj represents the j-th
permutation, while rij denotes the associated reward. Our episodic
memoryM can be represented by the following structure:

M = {si : {a1 : ri1, a2 : ri2, . . . , ap : rip}}Li=1 (2)

Here, p signifies the total number of permutations available for the
in-context examples (with m examples per prompt, p = m!). L is
the total of the stored states in the episodic memory. An illustration
of our memory architecture is given in Fig. 1. Below are the detailed
components of the memory.

State representation Obtaining text representations for the state is
crucial for memory storage and retrieval. In our approach, we employ
the encoder E as SentenceTransformers, which is designed to generate
high-quality sentence embeddings that can be used effectively in
various NLP tasks [31].

Example selection To simplify the optimization, we do not aim to
optimize the example selection process. Therefore, following prior
work [22], from the in-context dataset Dic, given input x, we select

m in-context examples that are semantically closest to x. We measure
the semantic similarity between in-context example xi

ic and the input
query x using Cosine Similarity:

CS
(
x, xi

ic

)
=

s · siic
||s||||siic||

(3)

In the context of a few-shot classification task, where label biases
can significantly influence the prompting outcome, it is crucial to
maintain an equal number of examples for each label. To address this,
we propose the following strategy: if there are G unique labels in D,
and G < m, we select m

G closest samples from each label. Conversely,
if G ≥ m, we iteratively choose one sample for each label until we
have sufficient in-context examples. We denote the above process as
the function Ω that retrieves context examples for each state s:

Ts = Ω(s,Dic) (4)

where Ts is the set of in-context example for the state s
Action encoding An action refers to a specific arrangement of

in-context examples within Ts. As mentioned in the introduction, a
naive approach of encoding the action as a sequence of ICL examples
will lead to a huge action space. Therefore, we propose to encode the
action as a sequence of similarity ranks. Concretely, for each state
s, we measure the semantic similarity between it and the states of
the in-context examples using Eq. 3. Next, we rank each example
according to its similarity to the input query and encode the ICL
ordering as a sequence of these ranks. For example, consider an action
represented as a = (1,m, . . . , 3). This permutation indicates that the
first in-context example is the closest to the test query, the second is
the farthest, and the sequence continues until the m-th position, which
is the third closest example. This approach encapsulates the relational
similarity information among in-context examples and the test query,
with the action space size being m!.

Given a set of in-context examples Ts and an action a, we define a
permutation function∇, used to reorder the elements of Ts according
to the sequence specified by a. The action a represents a specific
ordering of indices that correspond to the elements in Ts. Formally,
we have:

T a
s = ∇ (Ts, a) (5)

where T a
s represents the sequence of in-context examples rearranged

in accordance with action a.
Reward design For classification tasks that use Masked LM such

as RoBERTa [25], for each query x, we define the reward based on
the log probability of the output label of the model logPL (ŷ|x, p)

r (c, x, p) = λ1 logPL (ŷc | x, p)− λ2 argmax
c̸=c′

logPL (ŷc′ | x, p) (6)

where λ1 > 0 and λ2 > 0 are the two balance hyperparameters for
the positive and negative terms respectively.

For generative tasks (e.g: Commonsense Reasoning, Question An-
swering) that use Causal LM such as Llama [38], where ground truth
label c is a sequence of tokens, we define the reward as:

r (c, x, p) = λ1

|c|∑
i=1

logPL (i | x, p)−

λ2

|c′|∑
j=1

argmax
c̸=c′

logPL (j | x, p)

(7)

In the equations above, c′ is the token/sequence that has the highest
probability, other than the ground truth label c. In Eq. (7), i and j

are the tokens of two sequences c and c′, respectively. Intuitively,
for classification tasks, the reward is positive when the prediction is
correct and negative otherwise.

For tasks that use Causal LM and Exact Match as evaluation metrics,
we define the reward as:

r (c, x, p) =

{
1, if c = c′

0, otherwise
(8)

2.3 Episodic Memory Operation

Our memory operation involves two main phases. Training: The RL
agent interacts with the LLM to try actions and collect rewards for
(s, a) pairs to fill the memory. Testing: The RL agent uses the memory
to determine the ICL ordering for testing data.

Training In this phase, we collect and store the rewards defined
above for state action pairs (s, a). Given an input query x ∈ Dtrain,
we get its representation using the pre-trained encoder s = E (x).
Given the a pair of state and action (s, a) and the reward r, following
[3], our Episodic MemoryM is updated using Memory writing as
follows:

M (s, a)←
{
r, if (s, a) /∈M
max

{
M (s, a) , r

}
, otherwise

(9)

It is noted that the stored rewards never decrease, indicating a focus
on high-return actions. In our setting, we use the highest possible
reward that the downstream LM can achieve for the pair (s, a) to
estimate the value of using ICL ordering a for input x. The motivation
behind this is to emulate the brain’s specialized learning mechanisms
that exploit predictable patterns in the environment, enabling rapid
learning from high-return actions recorded in memory.

We limit the size of our memory to be equal to the size of the
training dataset Dtrain. In the few-shot scenario where there are
limited training samples, it is guaranteed that our memory will not be
overflowed. However, in other settings where Dtrain is too big, our
memory can have a fixed smaller size, and when a new state-value pair
has to be introduced, the least recently used state will be discarded.

Testing In this phase, we select the optimal permutation for each
testing query. In reality, it is common to receive novel states (states
that are not seen in training). To handle this, we employ a nearest-
neighbor estimator. In particular, we obtain the approximated value
of a testing state st and a candidate action a using the following
Memory Reading process [15]:

M̂ (st, a) =

∑k

i=1M
(
si, a

) CS(xt,x
i)∑k

j=1 CS(xt,xj)
, if (st, a) /∈M

M (st, a) , otherwise
(10)

where si, i = 1, . . . , k are the k states with the highest similarity to
the testing state st, CS

(
xt, x

i
)

is the Cosine Similarity between the
neighbor xi to the test query xt. The motivation behind the weighted
sum is that we believe the semantic similarity between training data
and the test query should correspondingly affect its weight in the
ordering process. After having calculated M̂ (st, a), we get the action
at for st as follow:

at = argmax
a
M̂ (st, a) (11)

We note that this nearest neighbor estimation is a different process
from the nearest neighbor retrieval in the example selection described
in Section 2.2. Algo. 1 summarizes the procedure of our method.

3 Experiments
3.1 Few-Shot Text Classification

Datasets. For classification tasks, we conduct experiments for senti-
ment analysis, Natural Language Understanding (NLU), topic clas-
sification, and natural language inference datasets. For sentiment
analysis, we choose SST-2 [35], IMDB [27] and CR [11] as datasets.
For NLU task, we select COLA [39]. For Reading Comprehension,
we choose Boolq [6]. For topic classification, we use AG News [45].
For Natural Language Inference (NLI), we choose QNLI [40]. The
statistics, manual templates, and label words of this dataset are shown
in Appendix A.3.

Baselines. For few-shot classification tasks, we compare our work
with previous continuous and discrete prompt optimization methods.
Finetuning is the method that finetunes the entire language model with
a classification head using the few-shot dataset. For Manual Prompt,
we use the hand-written prompts from [34]. In-context Demonstra-
tion randomly selects one example and concatenates it with the test
query. Black-box Tuning [37] combines a discrete component opti-
mized through non-gradient methods and a soft component refined
via gradient descent. RLPrompt [7] generates discrete prompt tokens
using RL framework. TEMPERA [44] trains a RL agent to edit prompt
sequentially. To ensure a fair comparison, we rerun these methods
under our setting. Besides complicated baselines, we also investigate
a simple heuristic baseline. Random Ordering adopts nearest neighbor
example selection, randomly permutes the in-context examples, and
concatenates with the test query.

Experiment Setup. We use RoBERTa-large [25] as the down-
stream LM. To ensure a fair comparison, we follow the same setting
from [7, 44] by testing all baselines on a few-shot text classification
setting. Training dataset Dtrain has 16 examples per class, and we
sample another 16 data points as in-context dataset Dic (M = 16).
For reporting the testing results, we make use of the models having
the highest performance on the validation set and do inference on the
test set Dtest provided by the task. We use m = 4 examples for each
prompt as in prior works [44]. For each run, we use the same training
and in-context samples for all baselines. At test time, we select the
number of nearest-neighbor k = 10 for POEM. We describe more
details in terms of the instructions in Tab. 9 and templates in Tab. 10.

Results. We present our few-shot text classification results over 4
runs in Tab. 1. We can see that on most tasks, POEM outperforms
previous baselines by a large margin. For example, we have a 2.9 %
absolute gain on SST-2 task (over TEMPERA), and 5.6 % on IMDB,
and the performance is almost comparable to finetuning the LM on
QNLI task. Especially, for NLI and NLU tasks, on harder datasets like
Boolq and COLA, we have a significance gain of 11.2 % and 14.2
% respectively. We also see that POEM has a much smaller variance
between different runs than all other baselines, which indicates that
it is more stable across different datasets. Unlike TEMPERA, which
requires sequential modification of in-context examples, our method,
POEM, enables one-step optimization. Our approach not only sim-
plifies the process but also overcomes TEMPERA’s slow inference
involving several numbers of edits for each prompt. POEM also out-
performs Random Ordering significantly, by nearly 13% on average,
highlighting the importance of ICL optimization. More comparisons
with advanced heuristic approaches are given in Appendix A.1.

3.2 General Language Understanding Tasks

We further extend experiments of our method to general language un-
derstanding tasks that require stronger downstream LLM to generate

SST-2 Boolq CR AG News IMDB QNLI COLA Average

Finetune 80.6(3.9) 55.3(3.1) 73.3(7.5) 84.9(3.6) 85.4(5.2) 55.4(1.6) 55.6(9.9) 70.1

Manual Prompt 82.8 61.0 79.6 76.9 85.0 51.0 32.0 66.9
In-Context Demo. 85.8(0.7) 58.3(0.4) 85.5(1.5) 74.9(0.8) 69.8(0.6) 53.5(0.5) 56.0(1.2) 69.1
Instruction 89.0 61.0 80.8 54.8 89.0 56.0 61.0 70.2
Black-box Tuning 89.1(0.9) 53.3(1.7) 87.4(1.0) 83.5(0.9) 68.9(5.1) 50.8(0.6) 51.4(2.1) 69.2
RLPrompt 87.7(3.6) 41.6(3.0) 90.4(1.7) 73.8(5.8) 57.3(8.9) 50.1(0.8) 51.6(1.5) 64.6
TEMPERA 90.5(1.6) 54.9(5.8) 91.1(1.1) 81.6(2.5) 85.3(2.8) 51.6(1.0) 54.2(5.5) 72.7
Random Ordering 81.5(0.9) 62.7(0.9) 87.2(0.4) 57(0.2) 74.1(0.5) 53.9(0.4) 41.63(1.3) 65.4

POEM (Ours) 93.4(0.2) 66.1(0.1) 92.6(0.2) 80.3(1.1) 90.9(0.1) 54.3(0.2) 68.4(0.4) 78
Table 1. Accuracy and standard derivation (if available) of different baselines on few-shot classification over 4 seeds. Some methods like Manual Prompt produce
the same results across seeds, and thus, have no standard derivation to report. The highest accuracy is bolded and the second-highest accuracy is underlined. The
last column shows the average accuracy across all datasets in this table.

Model name Baseline Hellaswag PIQA TruthfulQA TriviaQA

acc. acc. acc. EM

0-shot 57.79 76.38 25.99 18.90
Random 58.59 77.37 32.38 58.65
Ascending 58.36 76.22 26.94 57.06
Descending 59.61 78.73 38.90 59.01

Llama 2 7B POEM (Ours) 59.65 79.27 38.91 59.06

0-shot 60.73 77.58 24.63 27.26
Random 62.40 79.05 32.79 65.98
Ascending 61.39 76.77 26.94 64
Descending 63.17 79 40.41 67.13

Llama 2 13B POEM (Ours) 63.13 79.43 40.95 67.06

0-shot 63.76 79.27 28.16 42.69
Random 65.59 80.72 38.64 73.09
Ascending 65.59 80.79 32.24 72.07
Descending 66.99 81.66 45.17 73.53

Llama 2 70B POEM(Ours) 67.15 81.12 45.71 73.56
Table 2. Comparison between POEM and other heuristic baselines. All baselines (except for 0-shot) use 4 in-context examples for each prompt. Bolded are the
best results and underlined are the second best. The metric for evaluation for each dataset is written below the dataset names. acc. stands for accuracy and EM
stands for exact match.

Algorithms Training time (min) Accuracy
RLPrompt 3100 87.7
TEMPERA 3208 90.5
POEM 21 93.4

Table 3. Comparison between POEM, RLPrompt and TEMPERA in terms of
training time until convergence (minutes, the smaller the better) and accuracy
of SST-2 dataset.

Algorithms Accuracy
RLPrompt 52.6
TEMPERA 88
POEM 93.4

Table 4. Accuracy (60 iterations) of POEM, RLPrompt and TEMPERA on
SST-2 dataset.

the answers.
Datasets. We measure performance on two main tasks with four

datasets, categorized as follows: Commonsense Reasoning. Hel-
laswag [43], PIQA [2]; Question Answering. TruthfulQA-mc1 [21],
TriviaQA [12]. For more complex tasks such as Question Answering
and Reading Comprehension, which involve multiple text fields, we
employ a reranking approach based on the field containing the most
relevant information. In cases like TruthfulQA, where certain fields
like type and category lack semantic significance, we measure textual
distances between examples using the question field, which typically
encapsulates the query to be answered. For more detailed information
on datasets and the fields used for retrieval, please refer to Appendices
A.3 and A.4.

SST-2 CR COLA AG News
Naive Action 91 91.4 68 79.6
Rank Action 93.4 92.6 68.4 80.3
Table 5. Ablation on action encoding. Average accuracy over 4 runs.

SST-2 CR COLA AG News
Imbalanced labels 93.5 92.2 58.6 69.7
Balanced labels 93.4 92.6 68.4 80.3

Table 6. Average accuracy over 4 runs on imbalanced in-context examples
selection.

Baselines. We note that complicated optimization baselines such as
RLPrompt and TEMPERA have not been designed and applied to this
task. Therefore, we compare POEM with several heuristic baselines. 0-
shot only includes the test query. Random Ordering randomly permute
the examples. Ascending Ordering arranges in-context examples by
increasing relevance, placing the most pertinent example closest to the
test instance. In contrast, Descending Ordering positions examples
from most to least relevant in relation to the test instance.

Experiment Setup. We use Llama-2-7b-chat, Llama-2-13b-chat,
Llama-2-70b-chat [38] with default parameters. For all datasets, sim-
ilar to classification tasks, we randomly sample 16 examples for
training and another 16 examples to form an in-context dataset. For
all baselines (except for 0-shot), we use m = 4 in-context examples
for each test query. At test time, we select the number of nearest
neighbors k = 10. Baselines that use ICL examples share the same
example selection mechanism described in the Method section.

Results. We present our results in Tab. 2. Overall, it is clear that
POEM shows superior results compared to Random and 0-shot base-
lines. This suggests that our approach is beneficial for optimizing ICL

Parameter Value SST-2 CR COLA AG
News

10 92.9 90.8 67.2 79.7
N 60 93.4 92.6 68.4 80.3

120 93.3 92.5 68.2 80.2
8 93 90.8 68.7 80

M 12 93.1 91 68.7 80.2
16 93.4 92.6 68.4 80.3
2 91.8 92.1 67.9 59.4

m 4 93.4 92.6 68.4 80.3
6 91.1 90.8 68.2 71.4
6 93.1 92.3 68.1 79.9

k 10 93.4 92.6 68.4 80.3
12 93.1 92.5 68.1 79.5

Table 7. Average accuracy across different N , M , m and k for few-shot
text classification datasets.

Model m k TruthfulQA PIQA
2 10 35.1 78.67
4 10 38.91 79.27

Llama 2 7B 6 10 38.64 78.73
2 10 36.33 78.94
4 10 40.95 79.43

Llama 2 13B 6 10 40.27 79
4 6 39.46 78.78
4 10 38.91 79.27

Llama 2 7B 4 12 38.37 79
4 6 40.54 79.43
4 10 40.95 79.43

Llama 2 13B 4 12 40.41 78.84
Table 8. Accuracy across different m and k for general language understand-
ing datasets.
example ordering. Compared to heuristic methods, in the context of 4
examples and for these datasets, POEM performs slightly better. This
is because in these cases, the LLMs seem to favor the examples to be
ordered descendingly. However, we note that POEM performs better
in 9 out of 12 different settings compared to the Descending baseline.
We also would like to highlight that POEM consistently shows up in
the top 2 best baselines across all datasets. We acknowledge the chal-
lenges in replicating Llama’s evaluation setup due to the unavailability
of their system prompts. Consequently, to maintain simplicity and
consistency, our study does not incorporate specific instructions into
the prompts for LLMs. Instead, we apply uniform templates across
all baselines. This approach ensures fair comparison between POEM
and other baselines, thus showing the impact of in-context example
reordering. For further details on the templates for this task, please
see Tab. 10.

3.3 Ablation Studies

3.3.1 Analysis of Efficiency

We provide empirical evidence for our claim of POEM being fast and
efficient. We compare performance and runtime on SST-2 dataset [35]
between POEM, RLPrompt and TEMPERA. For a fair evaluation, all
experiments were conducted with one identical GPU Nvidia A100.
As shown in Tab. 3, the training time (until convergence) of POEM is
approximately 150 times faster than that of TEMPERA and RLPrompt
while achieving better accuracy. We also compare the performance of
POEM with that of TEMPERA and RLPrompt after 60 iterations. The
results in Table 4 reveal that POEM has attained a state of convergence,
demonstrating the effectiveness of its learning algorithm within the
given iteration frame. On the other hand, TEMPERA exhibits ongoing
optimization efforts beyond the 60-iteration mark. This observation
leads us to posit that TEMPERA’s decent performance is attributable
to its initial prompt construction methodology. RLPrompt, however,
is still in the early stages of training, reflected by its near-random

accuracy. It is expected that RLPrompt will need more iterations to
properly improve its prompt generation process.

3.3.2 Analysis of POEM’s Components

Action encoding. We want to look further into how our action encod-
ing contributes to our framework. To do this, we design a naive action
encoding of a sequence of m examples. This results in an action space
of M !

(M−m)!
instead of m!, where M and m are the number of total

in-context examples and number of examples per prompt, respectively.
As seen in Tab. 5, without our similarity-ranked encoding, perfor-
mances on all classification tasks decrease. Notably, on SST-2 dataset,
accuracy drops 2.4 %, from 93.4 to 91.

Imbalanced labels. For few-shot classification task, we aim to in-
vestigate how imbalanced in-context example labels can affect perfor-
mance. Instead of employing our example selection strategy described
in Section 2.2 to ensure an equal number of labels within a prompt, we
now select the top-m closest examples to the test query regardless of
their labels and use them to construct prompts. The results can be seen
in Tab. 6. We can clearly see that for sentiment classification datasets
(SST-2 and CR), POEM with imbalanced labels can still perform well.
For datasets that require natural language understanding (NLU) like
COLA, or those with more labels like AG News, the performances
surprisingly dropped significantly. This perhaps indicates that there
might be a strong bias coming from the imbalanced example selection
for test queries.

3.3.3 Hyperparameter Sensitivity

Number of iterations. We report the results with different number
of training iterations N . We vary the number of iterations to 10, 60
(default), and 120. The results in Table 7 suggest that more iterations
may enhance Memory Writing by enabling POEM to find superior
permutations. However, we set the default to 60 iterations to optimize
the trade-off between training duration and convergence stability.

Size of in-context dataset Dic. We aim to further explore the
impact of the in-context dataset size on performance. Intuitively, a
broader selection of examples should yield more effective prompts.
As indicated in Table 7, an increase in the in-context dataset size M
results in a slight enhancement of performance.

Number of nearest neighbors k in memory reading. We provide
results with different number of neighbors to study the robustness of
POEM. With k = 6, k = 10 and k = 12, we obtain the results shown
in Tab. 7 for few-shot classification datasets, and Tab. 8 for general
language understanding datasets. It can be seen that POEM’s perfor-
mance holds for different k, which indices our method is relatively
stable. We believe the reason behind this stability comes from the
weighted sum formula in 10, meaning that the order is predominantly
determined by test query’s closest neighbors.

Number of examples per prompt. We ablate on the number of
examples m used for demonstration in our algorithm. We choose the
size of 2, 4, 6 for this analysis. For few-shot classification, as shown
in Table 7, POEM performs optimally with 4 examples. A similar
trend is observed for general language understanding, with results
presented in Table 8. It is noteworthy that, in the original study [38],
an increment in the number of examples from four to five also led to
reduced accuracy. This implies that an overabundance of examples
might introduce noise, thereby leading to incorrect model decisions.

Dataset Natural Instructions
SST-2 "In this task, you are given sentences from movie reviews. The task is to classify a sentence as

"great" if the sentiment of the sentence is positive or as "terrible" if the sentiment of the sentence is
negative. "

IMDB "In this task, you are given a review of movie. Your task is to classify given movie review into two
categories: 1) great, and 2) terrible based on its content. "

CR "In this task, you are given sentences from customer reviews. The task is to classify a sentence as
"great" if the sentiment of the sentence is positive or as "terrible" if the sentiment of the sentence is
negative. "

COLA "You will be given a sentence. Check whether the sentence is grammatically correct and is meaning-
ful. If the sentence is grammatically correct, then answer with "yes", otherwise answer with "no". "

AG News "Classify the news articles into the categories of World, Sports, Business, and Technology. "
QNLI "You are given two sentences. Your task is to determine if sentence 1 entails sentence 2. If sentence

1 entails sentence 2, answer with "yes", otherwise answer with "no". "
Boolq "In this task you will be given a passage and a yes/no question based on the passage. You should

answer the question using the information from the passage. "
Table 9. Natural instructions used for few-shot classification datasets.

Task Templates
SST-2 "Does the following sentence have a {"great"} or {"terrible"} sentiment? {sentence}. Sentiment:

{answer_choices[label]}"
IMDB "Review: {sentence}. Sentiment: {answer_choices[label]}"
CR "Review: {sentence}. Sentiment: {answer_choices[label]}"
COLA "I’m copy-editing a story for publication. It has the following sentence in it: {sentence}. Does

this sentence make sense and is it grammatically correct? Please answer yes or no. Answer:
{answer_choices[label]}"

AG News "What label best describes this news article? {sentence}. Answer: {answer_choices[label]}"
QNLI "Passage: {passage}. After reading this passage, I have a question: {question}? yes or no? Answer:

{answer_choices[label]}"
Boolq "Passage: {passage}. After reading this passage, I have a question: {question}? True or False?

{answer_choices[label]}"
Hellaswag "{activity_label}: {ctx_a} {ctx_b}"
PIQA "Question: {goal}. Answer:"
TruthfulQA "Q: {question} A:"
TriviaQA "Question: {question}? Answer:"

Table 10. Templates used for in-context examples for all datasets.

4 Related Works

Prompt Engineering. The traditional approach to using pre-trained
LMs involves fine-tuning downstream datasets [8, 19], which involves
extensive updates to model parameters. However, this method has
shown limited success on downstream tasks. Another approach in-
volves utilizing manual prompts to guide LLMs in performing NLP
tasks without requiring additional training [4, 33, 34]. A different line
of work in prompt engineering aims to develop instructional prompts,
which offer task descriptions instead of fill-in-the-blank questions. In-
context Learning [4, 10, 22, 26] achieves impressive performance by
incorporating in-context demonstrations. However, these prompt en-
gineering approaches are time-consuming and require manual tuning,
which is not always feasible.

Prompt Optimization. Previous studies have also explored the
application of RL for prompt optimization. Deng et al. (2022) propose
using RL to directly generate prompts agnostic to specific queries [7];
however, the generated prompts may lack meaningfulness. Another
previous RL editing method [44] allowed editing task descriptions
and in-context examples. Yet, editing descriptions seldom aids opti-
mization, and swapping examples can be time-consuming, potentially
leading back to the initial state. Moreover, the method suits categor-
ical tasks like classification. In the realm of continuous embedding
space, gradients derived from LMs are employed to directly facilitate
prompt optimization, a method also referred to as soft prompt tun-
ing [20, 24]. However, due to their continuous nature, soft prompts
pose challenges in comprehension [18] and lack reusability across
diverse models because of disparities in latent embedding spaces [36].
With the expansion of LLMs in terms of both capacity and capabili-
ties, there has emerged a new line of research that employs LLMs as

prompt generators, prompt editors, or prompt scorers. [42] propose
a method utilizing LLMs as prompt optimizers, where the generated
prompts rely on the prior knowledge encoded within the LLMs. Zhou
et al. (2022) utilize two distinct LLMs, one as a zero-shot instruction
generator and the other as a scorer to optimize instructions [47]. How-
ever, these approaches share the drawback of relying heavily on the
prior knowledge encoded within LLMs, necessitating high-quality
LLMs, which can be resource-intensive. Furthermore, the variability
in generated outputs by LLMs can be unpredictable and challenging
to interpret.

Examplars retrieval and ordering in In-context learning. Re-
search has demonstrated the significant influence of in-context exam-
ple selection and arrangement on the performance of language models
(LMs). For instance, Rubin et al. (2021) utilize a retriever to select
in-context examples [32]. Additionally, Liu et al. (2021) propose a
heuristic approach to ordering examples, ranking them based on the
textual similarity between the test query and in-context examples
[22]. Recently, Zhang et al. have applied RL to enable the swapping
of in-context examples within their action space [44]. These studies
underscore the impact of selecting and arranging in-context examples
on downstream task performance. Compared to heuristics, RL solu-
tions are theoretically guaranteed. Unfortunately, existing RL-based
methods are complicated and slow during training. Our study is the
first RL-based prompt optimization method that is both simple and
efficient, demonstrating superior performance compared to existing
counterparts.

5 Discussion
We have introduced POEM, a novel approach to prompt optimiza-
tion within the RL paradigm. By reordering few-shot examples using
episodic memory, POEM significantly boosts the performance of
LLMs on a range of NLP tasks. Our method outperforms existing
techniques in few-shot classification on the various datasets and shows
advancements over heuristic baselines in general language understand-
ing tasks. The synergy between NLP and RL in POEM highlights
the potential for future innovations in test-time prompt optimization
algorithms, which could be pivotal for practical applications.

References

[1] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman,
D. Almeida, J. Altenschmidt, S. Altman, S. Anadkat, et al. Gpt-4 techni-
cal report. arXiv preprint arXiv:2303.08774, 2023.

[2] Y. Bisk, R. Zellers, J. Gao, Y. Choi, et al. Piqa: Reasoning about phys-
ical commonsense in natural language. In Proceedings of the AAAI
conference on artificial intelligence, volume 34, pages 7432–7439, 2020.

[3] C. Blundell, B. Uria, A. Pritzel, Y. Li, A. Ruderman, J. Z. Leibo, J. Rae,
D. Wierstra, and D. Hassabis. Model-free episodic control. arXiv
preprint arXiv:1606.04460, 2016.

[4] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, et al. Language mod-
els are few-shot learners. Advances in neural information processing
systems, 33:1877–1901, 2020.

[5] A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts,
P. Barham, H. W. Chung, C. Sutton, S. Gehrmann, et al. Palm: Scal-
ing language modeling with pathways. Journal of Machine Learning
Research, 24(240):1–113, 2023.

[6] C. Clark, K. Lee, M.-W. Chang, T. Kwiatkowski, M. Collins, and
K. Toutanova. Boolq: Exploring the surprising difficulty of natural
yes/no questions. In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long and Short Papers), pages
2924–2936, 2019.

[7] M. Deng, J. Wang, C.-P. Hsieh, Y. Wang, H. Guo, T. Shu, M. Song,
E. Xing, and Z. Hu. Rlprompt: Optimizing discrete text prompts with
reinforcement learning. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing, pages 3369–3391,
2022.

[8] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. In North
American Chapter of the Association for Computational Linguistics,
2019. URL https://api.semanticscholar.org/CorpusID:52967399.

[9] W. Fedus, B. Zoph, and N. Shazeer. Switch transformers: Scaling to
trillion parameter models with simple and efficient sparsity. Journal of
Machine Learning Research, 23(120):1–39, 2022.

[10] T. Gao, A. Fisch, and D. Chen. Making pre-trained language models
better few-shot learners. In Proceedings of the 59th Annual Meeting of
the Association for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing (Volume 1: Long
Papers), pages 3816–3830, 2021.

[11] M. Hu and B. Liu. Mining and summarizing customer reviews. In
Proceedings of the Tenth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’04, page 168–177, New
York, NY, USA, 2004. Association for Computing Machinery. ISBN
1581138881. doi: 10.1145/1014052.1014073. URL https://doi.org/10.
1145/1014052.1014073.

[12] M. Joshi, E. Choi, D. S. Weld, and L. Zettlemoyer. Triviaqa: A large
scale distantly supervised challenge dataset for reading comprehension.
In Proceedings of the 55th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pages 1601–1611, 2017.

[13] D. Khashabi, X. Lyu, S. Min, L. Qin, K. Richardson, S. Welleck, H. Ha-
jishirzi, T. Khot, A. Sabharwal, S. Singh, et al. Prompt waywardness:
The curious case of discretized interpretation of continuous prompts.
In Proceedings of the 2022 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies, pages 3631–3643, 2022.

[14] H. Le and S. Venkatesh. Neurocoder: General-purpose computation
using stored neural programs. In International Conference on Machine
Learning, pages 12204–12221. PMLR, 2022.

[15] H. Le, T. Karimpanal George, M. Abdolshah, T. Tran, and S. Venkatesh.
Model-based episodic memory induces dynamic hybrid controls. Ad-
vances in Neural Information Processing Systems, 34:30313–30325,
2021.

[16] H. Le, M. Abdolshah, T. K. George, K. Do, D. Nguyen, and S. Venkatesh.
Episodic policy gradient training. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 36, pages 7317–7325, 2022.

[17] M. Lengyel and P. Dayan. Hippocampal contributions to control: the
third way. Advances in neural information processing systems, 20, 2007.

[18] B. Lester, R. Al-Rfou, and N. Constant. The power of scale for parameter-
efficient prompt tuning. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing, pages 3045–3059,
2021.

[19] M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy,
V. Stoyanov, and L. Zettlemoyer. Bart: Denoising sequence-to-sequence
pre-training for natural language generation, translation, and comprehen-

sion. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 7871–7880, 2020.

[20] X. L. Li and P. Liang. Prefix-tuning: Optimizing continuous prompts
for generation. In Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Volume 1: Long Papers),
pages 4582–4597, 2021.

[21] S. Lin, J. Hilton, and O. Evans. Truthfulqa: Measuring how models
mimic human falsehoods. In Proceedings of the 60th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers),
pages 3214–3252, 2022.

[22] J. Liu, D. Shen, Y. Zhang, W. B. Dolan, L. Carin, and W. Chen. What
makes good in-context examples for gpt-3? In Proceedings of Deep
Learning Inside Out (DeeLIO 2022): The 3rd Workshop on Knowledge
Extraction and Integration for Deep Learning Architectures, pages 100–
114, 2022.

[23] X. Liu, K. Ji, Y. Fu, W. Tam, Z. Du, Z. Yang, and J. Tang. P-tuning:
Prompt tuning can be comparable to fine-tuning across scales and tasks.
In Proceedings of the 60th Annual Meeting of the Association for Com-
putational Linguistics (Volume 2: Short Papers), pages 61–68, 2022.

[24] X. Liu, Y. Zheng, Z. Du, M. Ding, Y. Qian, Z. Yang, and J. Tang. Gpt
understands, too. AI Open, 2023.

[25] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov. Roberta: A robustly optimized bert
pretraining approach. arXiv preprint arXiv:1907.11692, 2019.

[26] Y. Lu, M. Bartolo, A. Moore, S. Riedel, and P. Stenetorp. Fantastically
ordered prompts and where to find them: Overcoming few-shot prompt
order sensitivity. In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers),
pages 8086–8098, 2022.

[27] A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts.
Learning word vectors for sentiment analysis. In D. Lin, Y. Matsumoto,
and R. Mihalcea, editors, Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human Language Technolo-
gies, pages 142–150, Portland, Oregon, USA, June 2011. Association
for Computational Linguistics. URL https://aclanthology.org/P11-1015.

[28] P. Pezeshkpour and E. Hruschka. Large language models sensitivity
to the order of options in multiple-choice questions. In Findings of
the Association for Computational Linguistics: NAACL 2024, pages
2006–2017, 2024.

[29] A. Prasad, P. Hase, X. Zhou, and M. Bansal. Grips: Gradient-free,
edit-based instruction search for prompting large language models. In
Proceedings of the 17th Conference of the European Chapter of the
Association for Computational Linguistics, pages 3845–3864, 2023.

[30] R. Pryzant, D. Iter, J. Li, Y. Lee, C. Zhu, and M. Zeng. Automatic prompt
optimization with “gradient descent” and beam search. In Proceedings
of the 2023 Conference on Empirical Methods in Natural Language
Processing, pages 7957–7968, 2023.

[31] N. Reimers and I. Gurevych. Sentence-bert: Sentence embeddings us-
ing siamese bert-networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing, 2019.

[32] O. Rubin, J. Herzig, and J. Berant. Learning to retrieve prompts for
in-context learning. In Proceedings of the 2022 Conference of the North
American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pages 2655–2671, 2022.

[33] V. Sanh, A. Webson, C. Raffel, S. Bach, L. Sutawika, Z. Alyafeai,
A. Chaffin, A. Stiegler, A. Raja, M. Dey, et al. Multitask prompted
training enables zero-shot task generalization. In International Confer-
ence on Learning Representations, 2021.

[34] T. Schick and H. Schütze. Exploiting cloze-questions for few-shot
text classification and natural language inference. In Proceedings of
the 16th Conference of the European Chapter of the Association for
Computational Linguistics: Main Volume, pages 255–269, 2021.

[35] R. Socher, A. Perelygin, J. Wu, J. Chuang, C. D. Manning, A. Y. Ng, and
C. Potts. Recursive deep models for semantic compositionality over a
sentiment treebank. In Proceedings of the 2013 conference on empirical
methods in natural language processing, pages 1631–1642, 2013.

[36] Y. Su, X. Wang, Y. Qin, C.-M. Chan, Y. Lin, H. Wang, K. Wen, Z. Liu,
P. Li, J. Li, et al. On transferability of prompt tuning for natural language
processing. In Proceedings of the 2022 Conference of the North Ameri-
can Chapter of the Association for Computational Linguistics: Human
Language Technologies, pages 3949–3969, 2022.

[37] T. Sun, Y. Shao, H. Qian, X. Huang, and X. Qiu. Black-box tuning for
language-model-as-a-service. In International Conference on Machine
Learning, pages 20841–20855. PMLR, 2022.

[38] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei,
N. Bashlykov, S. Batra, P. Bhargava, S. Bhosale, et al. Llama 2: Open
foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288,

https://api.semanticscholar.org/CorpusID:52967399
https://doi.org/10.1145/1014052.1014073
https://doi.org/10.1145/1014052.1014073
https://aclanthology.org/P11-1015

2023.
[39] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. Bowman. Glue: A

multi-task benchmark and analysis platform for natural language under-
standing. In Proceedings of the 2018 EMNLP Workshop BlackboxNLP:
Analyzing and Interpreting Neural Networks for NLP, pages 353–355,
2018.

[40] A. Wang, Y. Pruksachatkun, N. Nangia, A. Singh, J. Michael, F. Hill,
O. Levy, and S. Bowman. Superglue: A stickier benchmark for general-
purpose language understanding systems. Advances in neural informa-
tion processing systems, 32, 2019.

[41] Z. Wu, S. Wang, J. Gu, R. Hou, Y. Dong, V. V. Vydiswaran, and H. Ma.
Idpg: An instance-dependent prompt generation method. In Proceedings
of the 2022 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, pages
5507–5521, 2022.

[42] C. Yang, X. Wang, Y. Lu, H. Liu, Q. V. Le, D. Zhou, and X. Chen. Large
language models as optimizers. In The Twelfth International Conference
on Learning Representations, 2024. URL https://openreview.net/forum?
id=Bb4VGOWELI.

[43] R. Zellers, A. Holtzman, Y. Bisk, A. Farhadi, and Y. Choi. Hel-
laswag: Can a machine really finish your sentence? arXiv preprint
arXiv:1905.07830, 2019.

[44] T. Zhang, X. Wang, D. Zhou, D. Schuurmans, and J. E. Gonzalez.
Tempera: Test-time prompt editing via reinforcement learning. In The
Eleventh International Conference on Learning Representations, 2022.

[45] X. Zhang, J. Zhao, and Y. LeCun. Character-level convolutional net-
works for text classification. Advances in neural information processing
systems, 28, 2015.

[46] Z. Zhao, E. Wallace, S. Feng, D. Klein, and S. Singh. Calibrate before
use: Improving few-shot performance of language models. ICML, 2021.

[47] Y. Zhou, A. I. Muresanu, Z. Han, K. Paster, S. Pitis, H. Chan, and
J. Ba. Large language models are human-level prompt engineers. In The
Eleventh International Conference on Learning Representations, 2023.

https://openreview.net/forum?id=Bb4VGOWELI
https://openreview.net/forum?id=Bb4VGOWELI

A Appendix
A.1 Additional results

We provide additional results for comparing POEM with heuristic
baselines in Tab. 12. We note that our method consistently surpasses
heuristic baselines. We also notice that the heuristic trend varies
between different datasets.

A.2 Training details

We provide the training details in Tab. 11. We also include the param-
eters for LLMs such as top p and temperature.

Training details

Minibatch size 16
Number of iterations (N) 60
Number of examples per label (g) 16
Number of in-context examples in total (M) 16
Number of training samples for non-categorical tasks 80
Number of in-context examples per prompt (m) 4
Number of nearest neighbors (k) 10
Positive lambda coefficient (λ1) 2.0
Negative lambda coefficient (λ2) 1.8
LLMs’ top p 0.9
LLMs’ temperature 0.6

Table 11. Hyperparameters used in our experiments.

A.3 Dataset details

We provide information for all datasets in Tab. 13 and Tab. 14.
For Finetuning, we use standard finetuning of the RoBERTa model
from huggingface for 100 epochs, a learning rate of 0.0003 and the
optimizer of Adam.

A.4 Prompting details

For datasets that have more than one text field, we provide the fields
used for retrieve nearest neighbor in 15.

SST-2 Boolq CR AG News IMDB QNLI COLA Average

Ascending Ordering 92.5 64.8 92.4 80.9 90.8 54.0 66.7 77.4
Descending Ordering 92.7 65.9 86.1 74.5 54.6 55.3 67.9 71
POEM (Ours) 93.4(0.2) 66.1(0.1) 92.6(0.2) 80.3(1.1) 90.9(0.1) 54.3(0.2) 68.4(0.4) 78

Table 12. Accuracy and standard derivation of POEM over 4 seeds versus advanced heuristic baselines on few-shot classification. The highest accuracy is
bolded and the second-highest accuracy is underlined. The last column shows the average accuracy across all datasets in this table.

Dataset details

Category Dataset Number
of labels

|Dtrain | |Dtest | Type Manual Prompt Verbalizers

SST-2 2 32 1.8k Sentiment ⟨S⟩ It was [mask]. great, terrible
IMDB 2 32 2k Sentiment It was [mask]. great, terrible

Single sen-
tence

CR 2 32 2k Sentiment It was [mask]. great, terrible

COLA 2 32 1.1k NLU It was [mask]. yes, no
AG News 4 64 7.6k Topic [mask] News: ⟨S⟩ World, Sports,

Business, Tech

Sentence-
pair

QNLI 2 32 9.8k NLI ⟨S1⟩? [mask],⟨S2⟩ yes, no

Boolq 2 32 3.3k MRC ⟨S1⟩? [mask],⟨S2⟩ yes, no
Table 13. Classification dataset details

Dataset details

Dataset |Dtrain | |Dic | |Dtest | Type

Hellaswag 16 16 10k Commonsense Reasoning
PIQA 16 16 1.8k Commonsense Reasoning
TruthfulQA 16 16 0.7k Question Answering
TriviaQA 16 16 18k Question Answering

Table 14. General Language Understanding dataset details

Task Dataset Field name
Boolq {question} + {passage}

Classification QNLI {text1} + {text2}
Hellaswag {question}
PIQA {goal}

General Language TruthfulQA {question}
Understanding TriviaQA {question}

Table 15. Selected fields for nearest neighbor retrieval for datasets with multiple fields

	Introduction
	Method
	Problem Formulation
	Prompting with Episodic Memory
	Episodic Memory Operation

	Experiments
	Few-Shot Text Classification
	General Language Understanding Tasks
	Ablation Studies
	Analysis of Efficiency
	Analysis of POEM's Components
	Hyperparameter Sensitivity

	Related Works
	Discussion
	Appendix
	Additional results
	Training details
	Dataset details
	Prompting details

