
Self-Attentive Associative Memory

Hung Le 1 Truyen Tran 1 Svetha Venkatesh 1

Abstract

Heretofore, neural networks with external mem-
ory are restricted to single memory with lossy rep-
resentations of memory interactions. A rich repre-
sentation of relationships between memory pieces
urges a high-order and segregated relational mem-
ory. In this paper, we propose to separate the
storage of individual experiences (item memory)
and their occurring relationships (relational mem-
ory). The idea is implemented through a novel
Self-attentive Associative Memory (SAM) opera-
tor. Found upon outer product, SAM forms a set
of associative memories that represent the hypo-
thetical high-order relationships between arbitrary
pairs of memory elements, through which a rela-
tional memory is constructed from an item mem-
ory. The two memories are wired into a single
sequential model capable of both memorization
and relational reasoning. We achieve competitive
results with our proposed two-memory model in
a diversity of machine learning tasks, from chal-
lenging synthetic problems to practical testbeds
such as geometry, graph, reinforcement learning,
and question answering.

1. Introduction
Humans excel in remembering items and the relationship
between them over time (Olson et al., 2006; Konkel & Co-
hen, 2009). Numerous neurocognitive studies have revealed
this striking ability is largely attributed to the perirhinal
cortex and hippocampus, two brain regions that support
item memory (e.g., objects, events) and relational memory
(e.g., locations of objects, orders of events), respectively
(Cohen et al., 1997; Buckley, 2005). Relational memory
theory posits that there exists a representation of critical
relationships amongst arbitrary items, which allows infer-
ential reasoning capacity (Eichenbaum, 1993; Zeithamova

1Applied AI Institute, Deakin University, Geelong, Australia.
Correspondence to: Hung Le <thai.le@deakin.edu.au>.

Proceedings of the 37 th International Conference on Machine
Learning, Vienna, Austria, PMLR 119, 2020. Copyright 2020 by
the author(s).

et al., 2012). It remains unclear how the hippocampus can
select the stored items in clever ways to unearth their hidden
relationships and form the relational representation.

Research on artificial intelligence has focused on design-
ing item-based memory models with recurrent neural net-
works (RNNs) (Hopfield, 1982; Elman, 1990; Hochreiter
& Schmidhuber, 1997) and memory-augmented neural net-
works (MANNs) (Graves et al., 2014; 2016; Le et al., 2018a;
2019). These memories support long-term retrieval of previ-
ously seen items yet lack explicit mechanisms to represent
arbitrary relationships amongst the constituent pieces of the
memories. Recently, further attempts have been made to
foster relational modeling by enabling memory-memory in-
teractions, which is essential for relational reasoning tasks
(Santoro et al., 2017; 2018; Vaswani et al., 2017). However,
no effort has been made to model jointly item memory and
relational memory explicitly.

We argue that dual memories in a single system are crucial
for solving problems that require both memorization and
relational reasoning. Consider graphs wherein each node is
associated with versatile features– as example a road net-
work structure where each node is associated with diverse
features: graph 1 where the nodes are building landmarks
and graph 2 where the nodes are flora details. The goal
here is to reason over the structure and output the associated
features of the nodes instead of the pointer or index to the
nodes. Learning to output associated node features enables
generalization to entirely novel features, i.e., a model can
be trained to generate a navigation path with building land-
marks (graph 1) and tested in the novel context of generating
a navigation path with flora landmarks (graph 2). This may
be achieved if the model stores the features and structures
into its item and relational memory, separately, and reason
over the two memories using rules acquired during training.

Another example requiring both item and relational memory
can be understood by amalgamating the N th-farthest (San-
toro et al., 2018) and associative recall (Graves et al., 2014)
tasks. N th-farthest requires relational memory to return a
fixed one-hot encoding representing the index to the N th-
farthest item, while associative recall returns the item itself,
requiring item memory. If these tasks are amalgamated to
compose Relational Associative Recall (RAR) – return the
N th-farthest item from a query (see § 3.2), it is clear that



Self-Attentive Associative Memory

both item and relational memories are required.

Three limitations of the current approaches are: (i) the re-
lational representation is often computed without storing,
which prevents reusing the precomputed relationships in
sequential tasks (Vaswani et al., 2017; Santoro et al., 2017),
(ii) few works that manage both items and the relationships
in a single memory, make it hard to understand how re-
lational reasoning occurs (Santoro et al., 2018; Schlag &
Schmidhuber, 2018), (iii) the memory-memory relation-
ship is coarse since it is represented as either dot product
attention (Vaswani et al., 2017) or weighted summation via
neural networks (Santoro et al., 2017). Concretely, the for-
mer uses a scalar to measure cosine distance between two
vectors and the later packs all information into one vector
via only additive interactions.

To overcome the current limitations, we hypothesize a two-
memory model, in which the relational memory exists sep-
arately from the item memory. To maintain a rich repre-
sentation of the relationship between items, the relational
memory should be higher-order than the item memory. That
is, the relational memory stores multiple relationships, each
of which should be represented by a matrix rather than a
scalar or vector. Otherwise, the capacity of the relational
memory is downgraded to that of the item memory. Finally,
as there are two separate memories, they must communicate
to enrich the representation of one another.

To implement our hypotheses, we introduce a novel operator
that facilitates the communication from the item memory to
the relational memory. The operator, named Self-attentive
Associative Memory (SAM) leverages the dot product at-
tention with our outer product attention. Outer product is
critical for constructing higher-order relational represen-
tations since it retains bit-level interactions between two
input vectors, thus has potential for rich representational
learning (Smolensky, 1990). SAM transforms a second-
order (matrix) item memory into a third-order relational
representation through two steps. First, SAM decodes a
set of patterns from the item memory. Second, SAM asso-
ciates each pair of patterns using outer product and sums
them up to form a hetero-associative memory. The memory
thus stores relationships between stored items accumulated
across timesteps to form a relational memory.

The role of item memory is to memorize the input data
over time. To selectively encode the input data, the item
memory is implemented as a gated auto-associative memory.
Together with previous read-out values from the relational
memory, the item memory is used as the input for SAM to
construct the relational memory. In return, the relational
memory transfers its knowledge to the item memory through
a distillation process. The backward transfer triggers recur-
rent dynamics between the two memories, which may be
essential for simulating hippocampal processes (Kumaran

& McClelland, 2012). Another distillation process is used
to transform the relational memory to the output value.

Taken together, we contribute a new neural memory model
dubbed SAM-based Two-memory Model (STM) that takes
inspiration from the existence of both item and relational
memory in human brain (Konkel & Cohen, 2009). In this
design, the relational memory is higher-order than the item
memory and thus necessitates a core operator that manages
the information exchange from the item memory to the rela-
tional memory. The operator, namely Self-attentive Associa-
tive Memory (SAM), utilizes outer product to construct a set
of hetero-associative memories representing relationships
between arbitrary stored items. We apply our model to a
wide range of tasks that may require both item and relational
memory: various algorithmic learning, geometric and graph
reasoning, reinforcement learning and question-answering
tasks. Several analytical studies on the characteristics of our
proposed model are also given in the Appendix.

2. Methods
2.1. Outer product attention (OPA)

Outer product attention (OPA) is a natural extension of the
query-key-value dot product attention (Vaswani et al., 2017).
Dot product attention (DPA) for single query q and nkv
pairs of key-value can be formulated as follows,

A° (q,K, V ) =

nkv∑
i=1

S (q · ki) vi (1)

where A° ∈ Rdv , q, ki ∈ Rdqk , vi ∈ Rdv , · is dot prod-
uct, and S forms softmax function. We propose a new
outer product attention with similar formulation yet differ-
ent meaning,

A⊗ (q,K, V ) =

nkv∑
i=1

F (q � ki)⊗ vi (2)

whereA⊗ ∈ Rdqk×dv , q, ki ∈ Rdqk , v ∈ Rdv ,� is element-
wise multiplication, ⊗ is outer product and F is chosen as
element-wise tanh function.

A crucial difference between DPA and OPA is that while
the former retrieves an attended item A°, the latter forms
a relational representation A⊗. As a relational represen-
tation, A⊗ captures all bit-level associations between the
key-scaled query and the value. This offers two benefits:
(i) a higher-order representational capacity that DPA can-
not provide and (ii) a form of associative memory that can
be later used to retrieve stored item by using a contraction
operation P (A⊗) (see Appendix § C-Prop. 6).

OPA is closely related to DPA. The relationship between
the two for simple S and F is presented as follows,



Self-Attentive Associative Memory

Proposition 1. Assume that S is a linear transformation:
S (x) = ax+b (a, b, x ∈ R), we can extractA° fromA⊗ by
using an element-wise linear transformation F (x) = af �
x+bf (af , bf , x ∈ Rdqk ) and a contraction P: Rdqk×dv →
Rdv such that

A° (q,K, V ) = P
(
A⊗ (q,K, V )

)
(3)

Proof. see Appendix § A.

Moreover, when nkv = 1, applying a high dimensional
transformation G (A⊗) is equivalent to the well-known bi-
linear model (see Appendix § B-Prop. 4). By introducing
OPA, we obtain a new building block that naturally supports
both powerful relational bindings and item memorization.

2.2. Self-attentive Associative Memory (SAM)

We introduce a novel and generic operator based upon OPA
that constructs relational representations from an item mem-
ory. The relational information is extracted via preserving
the outer products between any pairs of items from the item
memory. Hence, we name this operator Self-attentive Asso-
ciative Memory (SAM). Given an item memory M ∈ Rn×d
and parametric weights θ= {Wq ∈ Rnq×n , Wk ∈ Rnkv×n,
Wv ∈ Rnkv×n}, SAM retrieves nq queries, nkv keys and
values from M as Mq , Mk and Mv , respectively,

Mq = LN (WqM) (4)

Mk = LN (WkM) (5)

Mv = LN (WvM) (6)

where LN is layer normalization operation (Ba et al.,
2016b). Then SAM returns a relational representation
SAMθ (M)∈ Rnq×d×d, in which the s-th element of the
first dimension is defined as

SAMθ (M) [s] = A⊗ (Mq [s] ,Mk,Mv) (7)

=

nkv∑
j=1

F (Mq [s]�Mk [j])⊗Mv [j] (8)

where s = 1, ..., nq. Mq [s], Mk [j] and Mv [j] denote the
s-th row vector of matrix Mq , the j-th row vector of matrix
Mk and Mv, respectively. A diagram illustrating SAM
operations is given in Fig. 1 (right).

It should be noted that M can be any item memory in-
cluding the slot-based memories (Le et al., 2019), direct
inputs (Vaswani et al., 2017) or associative memories (Ko-
honen, 1972; Hopfield, 1982). We choose M ∈ Rd×d as
a form of classical associative memory, which is biologi-
cally plausible (Marr & Thach, 1991). Here, we follow the

traditional practice that sets n = d for the associative item
memory. From M we read query, key and value items to
form SAMθ (M)–a new set of hetero-associative memories
using Eq. 8. Each hetero-associative memory represents
the relationship between a query and all values. The role of
the keys is to maintain possible perfect retrieval for the item
memory (Appendix § C-Prop. 6).

The high-order structure of SAM allows it to preserve bit-
level relationships between a query and a value in a ma-
trix. SAM compresses several relationships with regard
to a query by summing all the matrices to form a hetero-
associative memory containing d2 scalars, where d is the
dimension of M . As there are nkv relationships given 1
query, the summation results in on average d2/nkv scalars
of representation per relationship, which is greater than 1 if
d >
√
nkv. By contrast, current self-attention mechanisms

use dot product to measure the relationship between any
pair of memory slots, which means 1 scalar per relationship.

2.3. SAM-based Two-Memory Model (STM)

To effectively utilize the SAM operator, we design a sys-
tem which consists of two memory unitsMi

t ∈ Rd×d and
Mr

t ∈ Rnq×d×d: one for items and the other for relation-
ships, respectively. From a high-level view, at each timestep,
we use the current input data xt and the previous state of
memories

{
Mi

t−1,Mr
t−1
}

to produce output ot and new
state of memories

{
Mi

t,Mr
t

}
. The memory executions are

described as follows.

Mi-Write The item memory distributes the data from the
input across its rows in the form of associative memory. For
an input xt, we update the item memory as

Xt = f1 (xt)⊗ f2 (xt)
Mi

t =Mi
t−1 +Xt (9)

where f1 and f2 are feed-forward neural networks that out-
put d-dimensional vectors. This update does not discrimi-
nate the input data and inherits the low-capacity of classical
associative memory (Rojas, 2013). We leverage the gating
mechanisms of LSTM (Hochreiter & Schmidhuber, 1997)
to improve Eq. 9 as

Mi
t = Ft

(
Mi

t−1, xt
)
�Mi

t−1+It
(
Mi

t−1, xt
)
�Xt (10)

where Ft and It are forget and input gates, respectively.
Detailed implementation of these gates is in Appendix § D.

Mr-Read As relationships stored inMr are represented
as associative memories, the relational memory can be read
to reconstruct previously seen items. As shown in Appendix
§ C-Prop. 7, the read is basically a two-step contraction,



Self-Attentive Associative Memory

Figure 1. STM (left) and SAM (right). SAM uses neural networks θ to extract query, key and value elements from a matrix memory M .
In this illustration, nq = 3 and nkv = 4. Then, it applies outer product attention to output a 3D tensor relational representation. In STM,
at every timestep, the item memoryMi

t is updated with new input xt using gating mechanisms (Eq. 10). The item memory plus the
read-out from the relational memory is forwarded to SAM, resulting in a new relational representation to update the relational memory
Mr

t (Eq. 11-12). The relational memory transfers its knowledge to the item memory (Eq. 13) and output value (Eq. 14).

vrt = softmax
(
f3 (xt)

>
)
Mr

t−1f2 (xt) (11)

where f3 is a feed-forward neural network that outputs a nq-
dimensional vector. The read value provides an additional
input coming from the previous state ofMr to relational
construction process, as shown later in Eq. 12.

Mi-ReadMr-Write We use SAM to read fromMi and
construct a candidate relational memory, which is simply
added to the previous relational memory to perform the
relational update,

Mr
t =Mr

t−1 + α1SAMθ

(
Mi

t + α2v
r
t ⊗ f2 (xt)

)
(12)

where α1and α2 are blending hyper-parameters. The input
for SAM is a combination of the current item memoryMi

t

and the association between the extracted item from the
previous relational memory vrt and the current input data xt.
Here, vrt enhances the relational memory with information
from the distant past. The resulting relational memory stores
associations between several pairs of items in a 3D tensors
of size nq × d× d. In our SAM implementation, nkv = nq .

Mr-Transer In this phase, the relational knowledge from
Mr

t is transferred to the item memory by using high dimen-
sional transformation,

Mi
t =Mi

t + α3G1 ◦ Vf ◦Mr
t (13)

where Vf is a function that flattens the first two dimensions
of its input tensor, G1 is a feed-forward neural network

that maps R(nqd)×d → Rd×d and α3 is a blending hyper-
parameter. As shown in Appendix § B-Prop. 5, with trivial
G1, the transfer behaves as if the item memory is enhanced
with long-term stored values from the relational memory.
Hence,Mr-Transfer is also helpful in supporting long-term
recall (empirical evidences in § 3.1). In addition, at each
timestep, we distill the relational memory into an output
vector ot ∈ Rno . We alternatively flatten and apply high-
dimensional transformations as follow,

ot = G3 ◦ Vl ◦ G2 ◦ Vl ◦Mr
t (14)

where Vl is a function that flattens the last two dimensions
of its input tensor. G2 and G3 are two feed-forward neural
networks that map Rnq×(dd) → Rnq×nr and Rnqnr →
Rno , respectively. nr is a hyper-parameter.

Unlike the contraction (Eq. 11), the distillation process
does not simply reconstruct the stored items. Rather, thanks
to high-dimensional transformations, it captures bi-linear
representations stored in the relational memory (proof in
Appendix § B). Hence, despite its vector form, the output
of our model holds a rich representation that is useful for
both sequential and relational learning. We discuss further
on how to quantify the degree of relational distillation in
Appendix § G. The summary of components of STM is
presented in Fig. 1 (left).

3. Results
3.1. Ablation study

We test different model configurations on two classical tasks
for sequential and relational learning: associative retrieval
(Ba et al., 2016a) and N th-farthest (Santoro et al., 2018)



Self-Attentive Associative Memory

Model Length 30 Length 50
E. A. E. A.

Fast weight∗ 50 100 5000 20.8
WeiNet∗ 35 100 50 100

STM (d = 48, w/o transfer) 10 100 100 100
STM (d = 48) 20 100 80 100

STM (d = 96, w/o gates) 100 24 100 20
STM (d = 96) 10 100 20 100

Table 1. Comparison of models on associative retrieval task with
number of epochs E. required to converge (lower is better) and
convergence test accuracy A. (%, higher is better). ∗ is reported
from Zhang & Zhou (2017).

(see Appendix § E for task details and learning curves).
Our source code is available at https://github.com/
thaihungle/SAM.

Associative retrieval This task measures the ability to re-
call a seen item given its associated key and thus involves
item memory. We use the setting with input sequence length
30 and 50 (Zhang & Zhou, 2017). Three main factors af-
fecting the item memory of STM are the dimension d of the
auto-associative item memory, the gating mechanisms (Eq.
10) and the relational transfer (Eq. 13). Hence, we ablate
our STM (d = 96, full features) by creating three other
versions: small STM with transfer (d = 48), small STM
without transfer (d = 48, w/o transfer) and STM without
gates (d = 96, w/o gates). nq is fixed to 1 as the task does
not require much relational learning.

Table 1 reports the number of epochs required to converge
and the final testing accuracy. Without the proposed gat-
ing mechanism, STM struggles to converge, which high-
lights the importance of extending the capacity of the auto-
associative item memory. The convergence speed of STM
is significantly improved with a bigger item memory size.
Relational transfer seems more useful for longer input se-
quences since if requested, it can support long-term retrieval.
Compared to other fast-weight baselines, the full-feature
STM performs far better as it needs only 10 and 20 epochs
to solve the tasks of length 30 and 50, respectively.

N th-farthest This task evaluates the ability to learn the
relationship between stored vectors. The goal is to find the
N th-farthest vector from a query vector, which requires
a relational memory for distances between vectors and a
sorting mechanism over the distances. For relational rea-
soning tasks, the pivot is the number of extracted items nq
for establishing the relational memory. Hence, we run our
STM with different nq = 1, 4, 8 using the same problem
setting (8 16- dimensional input vectors), optimizer (Adam),
batch size (1600) as in Santoro et al. (2018). We also run the
task with TPR (Schlag & Schmidhuber, 2018)–a high-order

Model Accuracy (%)
DNC∗ 25
RMC∗ 91
TPR 13

STM (nq = 1) 84
STM (nq = 4) 95
STM (nq = 8) 98

Table 2. Comparison of models on N th-farthest task (test accu-
racy). ∗ is reported from Santoro et al. (2018).

fast-weight model that is designed for reasoning.

As reported in Table 2, increasing nq gradually improves
the accuracy of STM. As there are 8 input vectors in this
task, literally, at each timestep the model needs to extract
8 items to compute all pairs of distances. However, as the
extracted item is an entangled representation of all stored
vectors and the temporarily computed distances are stored
in separate high-order storage, even with nq = 1, 4, STM
achieves moderate results. With nq = 8, STM nearly solves
the task perfectly, outperforming RMC by a large margin.
We have tried to tune TPR for this task without success
(see Appendix § E). This illustrates the challenge of training
high-order neural networks in diverse contexts.

3.2. Algorithmic synthetic tasks

Algorithmic synthetic tasks (Graves et al., 2014) examine
sequential models on memorization capacity (eg., Copy,
Associative recall) and simple relational reasoning (eg.,
Priority sort). Even without explicit relational memory,
MANNs have demonstrated good performance (Graves
et al., 2014; Le et al., 2020), but they are verified for
only low-dimensional input vectors (<8 bits). As higher-
dimensional inputs necessitate higher-fidelity memory stor-
age, we evaluate the high-fidelity reconstruction capacity
of sequential models for these algorithmic tasks with 32-bit
input vectors.

Two chosen algorithmic tasks are Copy and Priority sort.
Item memory is enough for Copy where the models just
output the input vectors seen in the same order in which they
are presented. For Priority sort, a relational operation that
compares the priority of input vectors is required to produce
the seen input vectors in the sorted order according to the
priority score attached to each input vector. The relationship
is between input vectors and thus simply first-order (see
Appendix § G for more on the order of relationship).

Inspired by Associative recall and N th-farthest tasks, we
create a new task named Relational Associative Recall
(RAR). In RAR, the input sequence is a list of items fol-
lowed by a query item. Each item is a list of several 32-bit
vectors and thus can be interpreted as a concatenated long

https://github.com/thaihungle/SAM
https://github.com/thaihungle/SAM


Self-Attentive Associative Memory

Figure 2. Bit error per sequence vs training iteration for algorithmic synthetic tasks.

vector. The requirement is to reconstruct the seen item that is
farthest or closest (yet unequal) to the query. The type of the
relationship is conditioned on the last bit of the query vector,
i.e., if the last bit is 1, the target is the farthest and 0 the clos-
est. The evaluated models must compute the distances from
the query item to any other seen items and then compare the
distances to find the farthest/closest one. Hence, this task is
similar to the N th-farthest task, which is second-order rela-
tional and thus needs relational memory. However, this task
is more challenging since the models must reconstruct the
seen items (32-bit vectors). Compared to N = 8 possible
one-hot outputs in N th-farthest, the output space in RAR is
232 per step, thereby requiring high-fidelity item memory.

We evaluate our model STM (nq = 8, d = 96) with the 4
following baselines: LSTM (Hochreiter & Schmidhuber,
1997), attentional LSTM (Bahdanau et al., 2015), NTM
(Graves et al., 2014) and RMC (Santoro et al., 2018). De-
tails of the implementation are listed in Appendix § F. The
learning curves (mean and error bar over 5 runs) are pre-
sented in Fig. 2.

LSTM is often the worst performer as it is based on vector
memory. ALSTM is especially good for Copy as it has a
privilege to access input vectors at every step of decoding.
However, when dealing with relational reasoning, memory-
less attention in ALSTM does not help much. NTM per-
forms well on Copy and moderately on Priority sort, yet
badly on RAR possibly due to its bias towards item memory.
Although equipped with self-attention relational memory,
RMC demonstrates trivial performance on all tasks. This
suggests a limitation of using dot-product attention to rep-
resent relationships when the tasks stress memorization or
the relational complexity goes beyond dot-product capacity.
Amongst all models, only the proposed STM demonstrates
consistently good performance where it almost achieves
zero errors on these 3 tasks. Notably, for RAR, only STM
can surpass the bottleneck error of 30 bits and reach ≈ 1
bit error, corresponding to 0% and 87% of items perfectly
reconstructed, respectively.

3.3. Geometric and graph reasoning

Problems on geometry and graphs are a good testbed for
relational reasoning, where geometry stipulates spatial rela-
tionships between points, and graphs the relational structure
of nodes and edges. Classical problems include Convex
hull, Traveling salesman problem (TSP) for geometry, and
Shortest path, Minimum spanning tree for graph. Convex
hull and TSP data are from Vinyals et al. (2015) where input
sequence is a list of points’ coordinates (number of points
N ∼ [5, 20]). Graphs in Shortest path and Minimum span-
ning tree are generated with solutions found by Dijkstra
and Kruskal algorithms, respectively. A graph input is rep-
resented as a sequence of triplets (node1, node2, edge12).
The desired output is a sequence of associated features of
the solution points/nodes (more in Appendix § H).

We generate a random one-hot associated feature for each
point/node, which is stacked into the input vector. This
allows us to output the node’s associated features. This is
unlike Vinyals et al. (2015), who just outputs the pointers
to the nodes. Our modification creates a challenge for both
training and testing. The training is more complex as the
feature of the nodes varies even for the same graph. The
testing is challenging as the associated features are likely to
be different from that in the training. A correct prediction
for a timestep is made when the predicted feature matches
perfectly with the ground truth feature in the timestep. To
measure the performance, we use the average accuracy of
prediction across steps. We use the same baselines as in § 3.2
except that we replace NTM with DNC as DNC performs
better on graph reasoning (Graves et al., 2016).

We report the best performance of the models on the test-
ing datasets in Table 3. Although our STM has fewest
parameters, it consistently outperforms other baselines by a
significant margin. As usual, LSTM demonstrates an aver-
age performance across tasks. RMC and ALSTM are only
good at Convex hull. DNC performs better on graph-like
problems such as Shortest path and Minimum spanning tree.
For the NP-hard TSP (N = 5), despite moderate point ac-



Self-Attentive Associative Memory

Model #Parameters Convex hull TSP Shortest Minimum
N = 5 N = 10 N = 5 N = 10 path spanning tree

LSTM 4.5 M 89.15 82.24 73.15 (2.06) 62.13 (3.19) 72.38 80.11
ALSTM 3.7 M 89.92 85.22 71.79 (2.05) 55.51 (3.21) 76.70 73.40

DNC 1.9 M 89.42 79.47 73.24 (2.05) 61.53 (3.17) 83.59 82.24
RMC 2.8 M 93.72 81.23 72.83 (2.05) 37.93 (3.79) 66.71 74.98
STM 1.9 M 96.85 91.88 73.96 (2.05) 69.43 (3.03) 93.43 94.77

Table 3. Prediction accuracy (%) for geometric and graph reasoning with random one-hot features. Italic numbers are tour length–
additional metric for TSP. Average optimal tour lengths found by brute-force search for N = 5 and 10 are 2.05 and 2.88, respectively.

Figure 3. Average reward vs number of games for reinforcement learning task in n-frame skip settings.

curacy, all models achieve nearly minimal solutions with an
average tour length of 2.05. When increasing the difficulty
with more points (N = 10), none of these models reach an
average optimal tour length of 2.88. However, only STM
approaches closer to the optimal solution without the need
for pointer and beam search mechanisms. Armed with both
item and relational memory, STM’s superior performance
suggests a qualitative difference in the way STM and other
methods solve these problems.

3.4. Reinforcement learning

Memory is helpful for partially observable Markov decision
process (Bakker, 2002). We apply our memory to LSTM
agents in Atari game environment using A3C training (Mnih
et al., 2016). More details are given in Appendix § I. In Atari
games, each state is represented as the visual features of a
video frame and thus is partially observable. To perform
well, RL agents should remember and relate several frames
to model the game state comprehensively. These abilities
are challenged when over-sampling and under-sampling the
observation, respectively. We analyze the performance of
LSTM agents and their STM-augmented counterparts under
these settings using a game: Pong.

To be specific, we test the two agents on different frame
skips (0, 4, 16, 32). We create n-frame skip setting by al-
lowing the agent to see the environment only after every n
frames, where 4-frame skip is standard in most Atari envi-
ronments. When no frameskip is applied (over-sampling),
the number of observations is dense and the game is long
(up to 9000 steps per game), which requires high-capacity

item memory. On the contrary, when a lot of frames are
skipped (under-sampling), the observations become scarce
and the agents must model the connection between frames
meticulously, demanding better relational memory.

We run each configuration 5 times and report the mean and
error bar of moving average reward (window size = 100)
through training time in Fig. 3. In a standard condition (4-
frame skip), both baselines can achieve perfect performance
and STM outperforms LSTM slightly in terms of conver-
gence speed. The performance gain becomes clearer under
extreme conditions with over-sampling and under-sampling.
STM agents require fewer practices to accomplish higher
rewards, especially in the 32-frame skip environment, which
illustrates that having strong item and relational memory in
a single model is beneficial to RL agents.

3.5. Question answering

bAbI is a question answering dataset that evaluates the abil-
ity to remember and reason on textual information (Weston
et al., 2015). Although synthetically generated, the dataset
contains 20 challenging tasks such as pathfinding and basic
induction, which possibly require both item and relational
memory. Following Schlag & Schmidhuber (2018), each
story is preprocessed into a sentence-level sequence, which
is fed into our STM as the input sequence. We jointly train
STM for all tasks using normal supervised training (more in
Appendix § J). We compare our model with recent memory
networks and report the results in Table 4.

MANNs such as DNC and NUTM have strong item memory,
yet do not explicitly support relational learning, leading to



Self-Attentive Associative Memory

Model
Error

Mean Best
DNC (Graves et al., 2016) 12.8 ± 4.7 3.8
NUTM (Le et al., 2020) 5.6 ± 1.9 3.3
TPR (Schlag & Schmidhuber, 2018) 1.34 ± 0.52 0.81
UT (Dehghani et al., 2018) 1.12 ± 1.62 0.21
MNM-p (Munkhdalai et al., 2019) 0.55 ± 0.74 0.18
STM 0.39 ± 0.18 0.15

Table 4. bAbI task: mean ± std. and best error over 10 runs.

significantly higher errors compared to other models. On the
contrary, TPR is explicitly equipped with relational bindings
but lack of item memory and thus clearly underperforms
our STM. Universal Transformer (UT) supports a manually
set item memory with dot product attention, showing higher
mean error than STM with learned item memory and outer
product attention. Moreover, our STM using normal super-
vised loss outperforms MNM-p trained with meta-level loss,
establishing new state-of-the-arts on bAbI dataset. Notably,
STM achieves this result with low variance, solving 20 tasks
for 9/10 run (see Appendix § J).

4. Related Work
Background on associative memory Associative mem-
ory is a classical concept to model memory in the brain
(Marr & Thach, 1991). While outer product is one common
way to form the associative memory, different models em-
ploy different memory retrieval mechanisms. For example,
Correlation Matrix Memory (CMM) and Hopfield network
use dot product and recurrent networks, respectively (Ko-
honen, 1972; Hopfield, 1982). The distinction between our
model and other associative memories lies in the fact that
our model’s association comes from several pieces of the
memory itself rather than the input data. Also, unlike other
two-memory systems (Le et al., 2018b; 2020) that simulate
data/program memory in computer architecture, our STM
resembles item and relational memory in human cognition.

Background on attention Attention is a mechanism that
allows interactions between a query and a set of stored
keys/values (Graves et al., 2014; Bahdanau et al., 2014).
Self-attention mechanism allows stored items to interact
with each other either in forms of feed-forward (Vaswani
et al., 2017) or recurrent (Santoro et al., 2018; Le et al.,
2019) networks. Modeling memory interactions can also be
achieved via attention over a set of parallel RNNs (Henaff
et al., 2016). Although some form of relational memory
can be kept in these approaches, they all use dot product
attention to measure interactions per attention head as a
scalar, and thus loose much relational information. We use
outer product to represent the interactions as a matrix and
thus our outer product self-attention is supposed to be richer

than the current self-attention mechanisms (Prop. 1).

SAM as fast-weight Outer product represents Hebbian
learning–a fast learning rule that can be used to build fast-
weights (von der Malsburg, 1981). As the name implies,
fast-weights update whenever an input is introduced to the
network and stores the input pattern temporarily for sequen-
tial processing (Ba et al., 2016a). Meta-trained fast-weights
(Munkhdalai et al., 2019) and gating of fast-weights (Schlag
& Schmidhuber, 2017; Zhang & Zhou, 2017) are introduced
to improve memory capacity. Unlike these fast-weight ap-
proaches, our model is not built on top of other RNNs.
Recurrency is naturally supported within STM.

The tensor product representation (TPR), which is a form
of high-order fast-weight, can be designed for structural
reasoning (Smolensky, 1990). In a recent work (Schlag &
Schmidhuber, 2018), a third-order TPR resembles our rela-
tional memoryMr

t where both are 3D tensors. However,
TPR does not enable interactions amongst stored patterns
through self-attention mechanism. The meaning of each
dimension of the TPR is not related to that ofMr

t . More
importantly, TPR is restricted to question answering task.

SAM as bi-linear model Bi-linear pooling produces out-
put from two input vectors by considering all pairwise bit
interactions and thus can be implemented by means of outer
product (Tenenbaum & Freeman, 2000). To reduce compu-
tation cost, either low-rank factorization (Yu et al., 2017) or
outer product approximation (Pham & Pagh, 2013) is used.
These approaches aim to enrich feed-forward layers with
bi-linear poolings yet have not focused on maintaining a
rich memory of relationships.

Low-rank bi-linear pooling is extended to perform visual at-
tentions (Kim et al., 2018). It results in different formulation
from our outer product attention, which is equivalent to full
rank bi-linear pooling (§ 2.1). These methods are designed
for static visual question answering while our approach is
used to maintain a relational memory over time, which can
be applied to any sequential problem.

5. Conclusions
We have introduced the SAM-based Two-memory Model
(STM) that implements both item and relational memory.
To wire up the two memory system, we employ a novel
operator named Self-attentive Associative Memory (SAM)
that constructs the relational memory from outer-product
relationships between arbitrary pieces of the item mem-
ory. We apply read, write and transfer operators to access,
update and distill the knowledge from the two memories.
The ability to remember items and their relationships of
the proposed STM is validated through a suite of diverse
tasks including associative retrieval, N th-farthest, vector



Self-Attentive Associative Memory

algorithms, geometric and graph reasoning, reinforcement
learning and question answering. In all scenarios, our model
demonstrates strong performance, confirming the usefulness
of having both item and relational memory in one model.

ACKNOWLEDGMENTS

This research was partially funded by the Australian Govern-
ment through the Australian Research Council (ARC). Prof
Venkatesh is the recipient of an ARC Australian Laureate
Fellowship (FL170100006).

References
Ba, J., Hinton, G. E., Mnih, V., Leibo, J. Z., and Ionescu,

C. Using fast weights to attend to the recent past. In
Advances in Neural Information Processing Systems, pp.
4331–4339, 2016a.

Ba, J. L., Kiros, J. R., and Hinton, G. E. Layer normalization.
arXiv preprint arXiv:1607.06450, 2016b.

Bahdanau, D., Cho, K., and Bengio, Y. Neural machine
translation by jointly learning to align and translate. arXiv
preprint arXiv:1409.0473, 2014.

Bahdanau, D., Cho, K., and Bengio, Y. Neural machine
translation by jointly learning to align and translate. Pro-
ceedings of the International Conference on Learning
Representations, 2015.

Bakker, B. Reinforcement learning with long short-term
memory. In Advances in neural information processing
systems, pp. 1475–1482, 2002.

Buckley, M. J. The role of the perirhinal cortex and hip-
pocampus in learning, memory, and perception. The
Quarterly Journal of Experimental Psychology Section B,
58(3-4):246–268, 2005.

Cohen, N. J., Poldrack, R. A., and Eichenbaum, H. Mem-
ory for items and memory for relations in the procedu-
ral/declarative memory framework. Memory, 5(1-2):131–
178, 1997.

Dehghani, M., Gouws, S., Vinyals, O., Uszkoreit, J., and
Kaiser, Ł. Universal transformers. arXiv preprint
arXiv:1807.03819, 2018.

Eichenbaum, H. Memory, amnesia, and the hippocampal
system. MIT press, 1993.

Elman, J. L. Finding structure in time. Cognitive science,
14(2):179–211, 1990.

Graves, A., Wayne, G., and Danihelka, I. Neural turing
machines. arXiv preprint arXiv:1410.5401, 2014.

Graves, A., Wayne, G., Reynolds, M., Harley, T., Dani-
helka, I., Grabska-Barwińska, A., Colmenarejo, S. G.,
Grefenstette, E., Ramalho, T., Agapiou, J., et al. Hybrid
computing using a neural network with dynamic external
memory. Nature, 538(7626):471–476, 2016.

Henaff, M., Weston, J., Szlam, A., Bordes, A., and LeCun,
Y. Tracking the world state with recurrent entity networks.
arXiv preprint arXiv:1612.03969, 2016.

Hochreiter, S. and Schmidhuber, J. Long short-term memory.
Neural computation, 9(8):1735–1780, 1997.

Hopfield, J. J. Neural networks and physical systems with
emergent collective computational abilities. Proceedings
of the national academy of sciences, 79(8):2554–2558,
1982.

Kim, J.-H., Jun, J., and Zhang, B.-T. Bilinear attention
networks. In Advances in Neural Information Processing
Systems, pp. 1564–1574, 2018.

Kohonen, T. Correlation matrix memories. IEEE transac-
tions on computers, 100(4):353–359, 1972.

Konkel, A. and Cohen, N. J. Relational memory and the
hippocampus: representations and methods. Frontiers in
neuroscience, 3:23, 2009.

Kumaran, D. and McClelland, J. L. Generalization through
the recurrent interaction of episodic memories: a model
of the hippocampal system. Psychological review, 119
(3):573, 2012.

Le, H., Tran, T., Nguyen, T., and Venkatesh, S. Variational
memory encoder-decoder. In Advances in Neural Infor-
mation Processing Systems, pp. 1508–1518, 2018a.

Le, H., Tran, T., and Venkatesh, S. Dual memory neural
computer for asynchronous two-view sequential learn-
ing. In Proceedings of the 24th ACM SIGKDD Inter-
national Conference on Knowledge Discovery; Data
Mining, KDD ’18, pp. 1637–1645, New York, NY,
USA, 2018b. ACM. ISBN 978-1-4503-5552-0. doi:
10.1145/3219819.3219981. URL http://doi.acm.
org/10.1145/3219819.3219981.

Le, H., Tran, T., and Venkatesh, S. Learning to remember
more with less memorization. In International Confer-
ence on Learning Representations, 2019. URL https:
//openreview.net/forum?id=r1xlvi0qYm.

Le, H., Tran, T., and Venkatesh, S. Neural stored-program
memory. In International Conference on Learning Rep-
resentations, 2020. URL https://openreview.
net/forum?id=rkxxA24FDr.

http://doi.acm.org/10.1145/3219819.3219981
http://doi.acm.org/10.1145/3219819.3219981
https://openreview.net/forum?id=r1xlvi0qYm
https://openreview.net/forum?id=r1xlvi0qYm
https://openreview.net/forum?id=rkxxA24FDr
https://openreview.net/forum?id=rkxxA24FDr


Self-Attentive Associative Memory

Marr, D. and Thach, W. T. A theory of cerebellar cortex. In
From the Retina to the Neocortex, pp. 11–50. Springer,
1991.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap,
T., Harley, T., Silver, D., and Kavukcuoglu, K. Asyn-
chronous methods for deep reinforcement learning. In
International conference on machine learning, pp. 1928–
1937, 2016.

Munkhdalai, T., Sordoni, A., Wang, T., and Trischler, A.
Metalearned neural memory. In Advances in Neural In-
formation Processing Systems, pp. 13310–13321, 2019.

Olson, I. R., Page, K., Moore, K. S., Chatterjee, A., and
Verfaellie, M. Working memory for conjunctions relies
on the medial temporal lobe. Journal of Neuroscience,
26(17):4596–4601, 2006.

Pham, N. and Pagh, R. Fast and scalable polynomial kernels
via explicit feature maps. In Proceedings of the 19th
ACM SIGKDD international conference on Knowledge
discovery and data mining, pp. 239–247. ACM, 2013.

Rojas, R. Neural networks: a systematic introduction.
Springer Science & Business Media, 2013.

Rudelson, M. and Vershynin, R. Sampling from large matri-
ces: An approach through geometric functional analysis.
Journal of the ACM (JACM), 54(4):21, 2007.

Santoro, A., Raposo, D., Barrett, D. G., Malinowski, M.,
Pascanu, R., Battaglia, P., and Lillicrap, T. A simple neu-
ral network module for relational reasoning. In Advances
in neural information processing systems, pp. 4967–4976,
2017.

Santoro, A., Faulkner, R., Raposo, D., Rae, J., Chrzanowski,
M., Weber, T., Wierstra, D., Vinyals, O., Pascanu, R., and
Lillicrap, T. Relational recurrent neural networks. In
Advances in Neural Information Processing Systems, pp.
7299–7310, 2018.

Schlag, I. and Schmidhuber, J. Gated fast weights for on-
the-fly neural program generation. In NIPS Metalearning
Workshop, 2017.

Schlag, I. and Schmidhuber, J. Learning to reason with third
order tensor products. In Advances in Neural Information
Processing Systems, pp. 9981–9993, 2018.

Smolensky, P. Tensor product variable binding and the
representation of symbolic structures in connectionist
systems. Artificial intelligence, 46(1-2):159–216, 1990.

Tenenbaum, J. B. and Freeman, W. T. Separating style and
content with bilinear models. Neural computation, 12(6):
1247–1283, 2000.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. Atten-
tion is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

Vinyals, O., Fortunato, M., and Jaitly, N. Pointer networks.
In Advances in Neural Information Processing Systems,
pp. 2692–2700, 2015.

von der Malsburg, C. The correlation theory of brain func-
tion, 1981. URL http://cogprints.org/1380/.

Weston, J., Bordes, A., Chopra, S., Rush, A. M., van
Merriënboer, B., Joulin, A., and Mikolov, T. Towards
ai-complete question answering: A set of prerequisite toy
tasks. arXiv preprint arXiv:1502.05698, 2015.

Yu, Z., Yu, J., Fan, J., and Tao, D. Multi-modal factorized
bilinear pooling with co-attention learning for visual ques-
tion answering. In Proceedings of the IEEE international
conference on computer vision, pp. 1821–1830, 2017.

Zeithamova, D., Schlichting, M. L., and Preston, A. R. The
hippocampus and inferential reasoning: building mem-
ories to navigate future decisions. Frontiers in human
neuroscience, 6:70, 2012.

Zhang, W. and Zhou, B. Learning to update auto-associative
memory in recurrent neural networks for improving se-
quence memorization. ArXiv, abs/1709.06493, 2017.

http://cogprints.org/1380/


Self-Attentive Associative Memory

Appendix
A. Relationship between OPA and DPA

Lemma 2. For ∀ni, nj ∈ N+,

ni∑
i=1

nj∑
j=1

qjkijvi =

nj∑
j=1

ni∑
i=1

qjkijvi (15)

where qj , kij , vi ∈ R.

Proof. We will prove by induction for all nj ∈ N+.

Base case: when nj = 1, the LHS = RHS =∑ni

i q1ki1vi. Let t ∈ N+ be given and suppose Eq. 15
is true for nj = t. Then

ni∑
i=1

t+1∑
j=1

qjkijvi =

ni∑
i=1

qt+1kit+1vi +

t∑
j=1

qjkijvi


=

ni∑
i=1

qt+1kit+1vi +

ni∑
i=1

t∑
j=1

qjkijvi

=

ni∑
i=1

qt+1kit+1vi +

t∑
j=1

ni∑
i=1

qjkijvi

=

t+1∑
j=1

ni∑
i=1

qjkijvi

Thus, Eq. 15 holds for nj = t + 1 and ∀nj ∈ N+ by the
principle of induction.

Proposition 3. Assume that S is a linear transformation:
S (x) = ax+b (a, b, x ∈ R), we can extractA° fromA⊗ by
using an element-wise linear transformation F (x) = af �
x+bf (af , bf , x ∈ Rdqk ) and a contraction P: Rdqk×dv →
Rdv such that

A° (q,K, V ) = P
(
A⊗ (q,K, V )

)
(16)

where

A° (q,K, V ) =

nkv∑
i=1

S (q · ki) vi (17)

A⊗ (q,K, V ) =

nkv∑
i=1

F (q � ki)⊗ vi (18)

Proof. We derive the LHS. Let ui denote the scalar
S (q · ki), then

ui = S (q · ki) = S

dqk∑
j=1

qjkij


=

dqk∑
j=1

aqjkij + b

where qj and kij are the j-th elements of vector q and ki,
respectively. Let l ∈ Rdv denote the vector A° (q,K, V ) =∑nkv

i=1 uivi, then the t-th element of l is

lt =

nkv∑
i=1

uivit

=

nkv∑
i=1

dqk∑
j=1

aqjkij + b

 vit

=

nkv∑
i=1

dqk∑
j=1

aqjkijvit + b

nkv∑
i=1

vit

= a

nkv∑
i=1

dqk∑
j=1

qjkijvit + b

nkv∑
i=1

vit (19)

We derive the RHS. Let di denote the vector F (q � ki),
then the j-th element of di is

dij = F (qjkij)

= afj qjkij + bfj (20)

Let e ∈ Rdqk×dv denote the matrix A⊗ (q,K, V ) =∑nkv

i=1 di ⊗ vi, then the j-th row, t-column element of e
is

ejt =

nkv∑
i=1

dijvit

=

nkv∑
i=1

(
afj qjkij + bfj

)
vit

=

nkv∑
i=1

afj qjkijvit + bfj

nkv∑
i=1

vit (21)

Let r ∈ Rdv denote the vector
∑dqk
j=1 ej , then the t-th ele-

ment of r is



Self-Attentive Associative Memory

Model Addition complexity Multiplication complexity Physical storage for relationships
DPA O ((dqknq + dv)nkv) O ((dqk + dv)nqnkv) O (nqnkv)
OPA O (nqnkvdqkdv) O (nqdqkdv) O (nqdqkdv)

Table 5. Computational complexity of DPA and OPA with nq queries and nkv key-value pairs. dqk denotes query or key size, while dv
value size.

Model Wall-clock time (second)
LSTM 0.1
NTM 1.8
RMC 0.3
STM 0.3

Table 6. Wall-clock time to process a batch of data on Priority Sort
task. The batch size is 128. All models are implemented using
Pytorch, have around 1 million parameters and run on the same
machine with Tesla V100-SXM2 GPU.

rt =

dqk∑
j=1

ejt

=

dqk∑
j=1

(
nkv∑
i=1

afj qjkijvit + bfj

nkv∑
i=1

vit

)

=

dqk∑
j=1

nkv∑
i=1

afj qjkijvit +

dqk∑
j=1

bfj

nkv∑
i=1

vit (22)

We can always choose afj = a and
∑dqk
j=1 b

f
j = b. Eq. 22

becomes,

rt = a

dqk∑
j=1

nkv∑
i=1

qjkijvit + b

nkv∑
i

vit

According to Lemma 2, lt = rt ∀dqk, nkv ∈ N+ ⇒ l =
r. Also, ∃P as a contraction: P (X) = apX with ap =
[1, ..., 1] ∈ R1×dqk .

We compare the complexity of DPA and OPA in Table 5.
In general, compared to that of DPA, OPA’s complexity is
increased by an order of magnitude, which is equivalent
to the size of the patterns. In practice, we keep that value
small (96) to make the training efficient. That said, due
to its high-order nature, our memory model still maintains
enormous memory space. In terms of speed, STM’s running
time is almost the same as RMC’s and much faster than that
of DNC or NTM. Table 6 compares the real running time of
several memory-based models on Priority Sort task.

B. Relationship between OPA and bi-linear model

Proposition 4. Given the number of key-value pairs nkv =
1, and G is a high dimensional linear transformation

G : Rdqk×dv → Rn, G (X) = W gV (X) where W g ∈
Rn×dqkdv , V is a function that flattens its input tensor, then
G (A⊗ (q,K, V )) can be interpreted as a bi-linear model
between f and v1, that is

G
(
A⊗ (q,K, V )

)
[s] =

dqk∑
j=1

dv∑
t=1

W g [s, j, t] f [j] v1 [t]

(23)
where W g [s, j, t] = W g [s] [(j − 1) dv + t],s = 1, ..., n,
j = 1, ..., dqk, t = 1, ..., dv , and f = F (q � k1).

Proof. By definition,

V (F (q � k1)⊗ v1) [(j − 1) dv + t] = (F (q � k1)⊗ v1) [j] [t]
= F (q � k1) [j] v1 [t]

We derive the LHS,

G
(
A⊗ (q,K, V )

)
[s] = (W gV (F (q � k1)⊗ v1)) [s]

=

dqkdv∑
u=1

W g [s] [u]V (F (q � k1)⊗ v1) [u]

=

dqkdv∑
(j−1)dv+t

(W g [s] [(j − 1) dv + t]

× V (F (q � k1)⊗ v1) [(j − 1) dv + t])

=

dqk∑
j=1

dv∑
t=1

W g [s, j, t]F (q � k1) [j] v1 [t]

which equals the RHS.

Prop. 4 is useful since it demonstrates the representational
capacity of OPA is at least equivalent to bi-linear pool-
ing, which is richer than low-rank bi-linear pooling using
Hadamard product, or bi-linear pooling using identity ma-
trix of the bi-linear form (dot product), or the vanilla linear
models using traditional neural networks.

Proposition 5. Given the number of queries nq = dqk, the
number of key-value pairs nkv = 1, Mr

t = SAMθ (M)
where M is an instance of the item memory in the past,
and G is a high dimensional linear transformation G :



Self-Attentive Associative Memory

Rnq×dqk×dv → Rdqk×dv , G (X) = W gVf (X) where
W g ∈ Rdqk×nqdqk , Vf is a function that flattens the first
two dimensions of its input tensor, then Eq. 13 can be inter-
preted as a Hebbian update to the item memory.

Proof. Let k1 = Mk and v1 = Mv when nkv =
1, by definition Vf (SAMθ (M)) [(s− 1) dqk + j, t] =
F (Mq [s]� k1) [j] v1 [t]. We derive,

G (SAMθ (M)) [i, t] = (W gVf (SAMθ (M))) [i, t]

=

nqdqk∑
u=1

W g [i, u]Vf (SAMθ (M)) [u, t]

=

nqdqk∑
(s−1)dqk+j=1

(W g [i, (s− 1) dqk + j]

× F (Mq [s]� k1) [j] v1 [t])

=

nq∑
s=1

dqk∑
j=1

W g [i, s, j] f [s, j] v1 [t]

(24)

where f [s, j] = F (Mq [s]� k1) [j] = F (Mq [s, j] k1 [j]).
It should be noted that with trivial rank-one W g: W g [i] =
diVf (I), di ∈ R, I is the identity matrix, Eq. 24 becomes

G (SAMθ (M)) [i, t] = d [i] v1 [t]

⇒ G (SAMθ (M)) = d⊗ v1

where d ∈ Rdqk , d [i] = di
∑nq

s=1 F (Mq [s, s] k1 [s]). Eq.
13 reads

Mi
t =Mi

t + α3d⊗ v1
which is a Hebbian update with the updated value v1. As
v1 is a stored pattern extracted from M encoded in the
relational memory, the item memory is enhanced with a
long-term stored value from the relational memory.

C. OPA and SAM as associative memory1

Proposition 6. If P is a contraction: Rdqk×dv → Rdv ,
P (X) = apX, ap ∈ R1×dqk , then A⊗ (q,K, V ) is
an associative memory that stores patterns {vi}nkv

i=1 and
P (A⊗ (q,K, V )) is a retrieval process. Perfect retrieval is
possible under the following three conditions,

(1) {ki}nkv

i=1 form a set of linearly independent vectors

(2) qi 6= 0, i = 1, ..., dqk

1In this section, we use these following properties without
explanation: a> (b⊗ c) =

(
a>b

)
c> and (b⊗ c) a =

(
c>a

)
b.

(3)F is chosen as F (x) = af � x (af , x ∈ Rdqk , afi 6= 0,
i = 1, ..., dqk)

Proof. By definition, A⊗ (q,K, V ) forms a hetero-
associative memory between xi = F (q � ki) and vi. If

{xi}nkv

i=1 are orthogonal, given some P with ap =
x>
j

‖x>
j ‖

,

then

P
(
A⊗ (q,K, V )

)
=

x>j∥∥x>j ∥∥
nkv∑
i=1

xi ⊗ vi

=

nkv∑
i=1,i6=j

(
x>j xi

)∥∥x>j ∥∥ v>i +

(
x>j xj

)∥∥x>j ∥∥ v>j

= v>j

Hence, we can perfectly retrieve some stored pattern vj
using its associated P . In practice, linearly independent
{xi}nkv

i=1 is enough for perfect retrieval since we can apply
Gram–Schmidt process to construct orthogonal {xi}nkv

i=1.
Another solution is to follow Widrow-Hoff incremental up-
date

A⊗ (q,K, V ) (0) = 0

A⊗ (q,K, V ) (i) = A⊗ (q,K, V ) (i− 1)

+
(
vi −A⊗ (q,K, V ) (i− 1)xi

)
⊗ xi

which also results in possible perfect retrieval given {xi}nkv

i=1

are linearly independent.

Now, we show that if (1) (2) (3) are satisfied, {xi}nkv

i=1 are
linearly independent using proof by contradiction. Assume
that {xi}nkv

i=1 are linearly dependent, ∃ {αi ∈ R}nkv

i=1, not all
zeros such that

−→
0 =

nkv∑
i=1

αixi =

nkv∑
i=1

αiF (q � ki)

=

nkv∑
i=1

αi
(
af � (q � ki)

)
=
(
af � q

)
�

(
nkv∑
i=1

αiki

)
(25)

As (2) (3) hold true, Eq. 25 is equivalent to

−→
0 =

nkv∑
i=1

αiki

which contradicts (1).



Self-Attentive Associative Memory

Prop. 6 is useful as it points out the potential of our OPA
formulation for accurate associative retrieval over several
key-value pairs. That is, despite that many items are ex-
tracted to form the relational representation, we have the
chance to reconstruct any items perfectly if the task requires
item memory. As later we use neural networks to generate
k and q, the model can learn to satisfy conditions (1) and
(2). Although in practice, we use element-wise tanh to
offer non-linear transformation, which is different from (3),
empirical results show that our model still excels at accurate
associative retrieval.

Proposition 7. Assume that the gates in Eq. 10 are kept
constant Ft = It = 1, the item memory construction is
simplified to

M =

N+1∑
i=1

xi ⊗ xi,

where {xi}N+1
i=1 are positive input patterns after feed-

forward neural networks and the relational memory con-
struction is simplified to

Mr = SAMθ (M) ,

and layer normalizations are excluded, then the memory
retrieval is a two-step contraction

vr = softmax
(
z>
)
Mrf (x)

Proof. Without loss of generality, after seeing N + 1 pat-
terns {xi}N+1

i=1 , SAM is given a (noisy or incomplete)
query pattern x that corresponds to some stored pattern
xp = xN+1, that is

{
x>p x ≈ 1

x>i x ≈ 0 i = 1, N

Unrolling Eq. 8 yields

SAMθ (M) [s] =

nkv∑
j=1

F (Mq [s]�Mk [j])⊗Mv [j]

=

nkv∑
j=1

F

(
Wq [s]

(
N+1∑
i=1

xi ⊗ xi

)

�Wk [j]

(
N+1∑
i=1

xi ⊗ xi

))

⊗Wv [j]

(
N+1∑
i=1

xi ⊗ xi

)

=

nkv∑
j=1

F

((
N∑
i=1

Wq [s]xi ⊗ xi

+ Wq [s]xp ⊗ xp)

�

(
N∑
i=1

Wk [j]xi ⊗ xi +Wk [j]xp ⊗ xp

))

⊗

(
N∑
i=1

Wv [j]xi ⊗ xi +Wv [j]xp ⊗ xp

)
(26)

When d > N , it is generally possible to find Wq, Wk and
Wv that satisfy the following system of equations:



Wq [s]xi = 0, i = 1, N,

Wq [s]xp = 1

Wk [j]xi = 0, i = 1, N

Wk [j]xp = 1

Wv [j]xi = 1, i = 1, N

Wv [j]xp = 1

We also assume that F is chosen as square root function,
then Eq. 26 simplifies to

SAMθ (M) [s] =

nkv∑
j=1

F (xp � xp)⊗
N+1∑
i=1

xi

= nkvxp ⊗
N+1∑
i=1

xi

= nkv

N+1∑
i=1

xp ⊗ xi

The first contraction softmax
(
z>
)
Mr can be interpreted

as an attention to {SAMθ (M) [s]}nq

s=1, which equals

nkv

N+1∑
i=1

xp ⊗ xi



Self-Attentive Associative Memory

The second contraction is similar to a normal associative
memory retrieval. When we choose f (x) = x

nkv
, the re-

trieval reads

vr =

(
nkv

N+1∑
i=1

xp ⊗ xi

)
x

nkv

=

N+1∑
i=1

(
x>i x

)
xp

≈ xp

D. Implementation of gate functions

Ft
(
Mi

t−1, xt
)
=WFxt + UF tanh

(
Mi

t−1
)
+ bF

It
(
Mi

t−1, xt
)
=WIxt + UI tanh

(
Mi

t−1
)
+ bI

Here, WF , UF , WI , WI ∈ Rd×d are parametric weights,
bF , bI ∈ R are biases and + is broadcasted if needed.

E. Learning curves on ablation study

We plot the learning curves of evaluated modes for Asso-
ciative retrieval with length 30, 50 and N th-farthest in Fig.
4. For N th-farthest, the last input in the sequence is treated
as the query for TPR. We keep the standard number of enti-
ties/roles and tune TPR2 with different hidden dimensions
(40, 128, 256) and optimizers (Nadam and Adam). All con-
figurations fail to converge for the normal N th-farthest as
shown in Fig. 4 (right). When we reduce the problem size
to 4 8-dimensional input vectors, TPR can reach perfect per-
formance, which indicates the problem here is more about
scaling to bigger relational reasoning contexts.

F. Implementation of baselines for algorithmic and
geometric/graph tasks

Following Graves et al. (2014), we use RMSprop optimizer
with a learning rate of 10−4 and a batch size of 128 for all
baselines.

• LSTM and ALSTM: Both use 512-dimensional hidden
vectors for all tasks.

• NTM3, DNC4: Both use a 256-dimensional LSTM
controller for all tasks. For algorithmic tasks, NTM
uses a 128-slot external memory, each slot is a 32-
dimensional vector. Following the standard setting,

2https://github.com/ischlag/TPR-RNN
3https://github.com/vlgiitr/ntm-pytorch
4https://github.com/deepmind/dnc

NTM uses 1 control head for Copy, RAR and 5
control heads for Priority sort. For geometric/graph
tasks, DNC is equipped with 64-dimensional 20-slot
external memory and 4-head controller. In geomet-
ric/graph problems, 20 slots are about the number of
points/nodes. We also tested with layer-normalized
DNC without temporal link matrix and got similar re-
sults.

• RMC5: We use the default setting with total 1024 di-
mensions for memory of 8 heads and 8 slots. We also
tried with different numbers of slots {1, 4, 16} and
Adam optimizer but the performance did not change.

• STM: We use the same setting across tasks nq = 8,
d = 96, nr = 96. α1,α2, and α3 are learnable.

G. Order of relationship

In this paper, we do not formally define the concept of or-
der of relationship. Rather, we describe it using concrete
examples. When a problem requires to compute the relation-
ship between items, we regard it as a first-order relational
problem. For example, sorting is first-order relational. Copy
is even zero-order relational since it can be solved without
considering item relationships. When a problem requires to
compute the relationship between relationships of items, we
regard it as a second-order relational problem and so on.

From this observation, we hypothesize that the computa-
tional complexity of a problem roughly corresponds to the
order of relationship in the problem. For example, if a
problem requires a solution whose computational complex-
ity between O (N) and O

(
N2
)

where N is the input size,
it means the solution basically computes the relationship
between any pair of input items and thus corresponds to
first-order relationship. Table 7 summarizes our hypothesis
on the order of relationship in some of our problems.

By design, our proposed STM stores a mixture of relation-
ships between items in a relational memory, which approx-
imately corresponds to a maximum of second-order rela-
tional capacity. The distillation process in STM transforms
the relational memory to the output and thus determines
the order of relationship that STM can offer. We can mea-
sure the degree that STM involves in relational mining by
analyzing the learned weight G2 of the distillation process.
Intuitively, a high-rank transformation G2 can capture more
relational information from the relational memory. Triv-
ial low-rank G corresponds to item-based retrieval without
much relational mining (Prop. 5). The numerical rank of a
matrixA is defined as r (A) = ‖A‖2F / ‖A‖

2
2, which relaxes

the exact notion of rank (Rudelson & Vershynin, 2007).

We report the numerical rank of learned G2 ∈ R6144×96

5https://github.com/L0SG/relational-rnn-pytorch



Self-Attentive Associative Memory

Figure 4. Testing accuracy (%) on associative retrieval L=30 (left), L=50 (middle) and N th-farthest (right).

Task General complexity Order
Copy/Associative retrieval O (N) 0

Sort O (N logN) 1
Convex hull O (N logN) 1

Shortest path6 O (E log V ) 1
Minimum spanning tree O (E log V ) 1

RAR/N th-Farthest O
(
N2 logN

)
2

Traveling salesman problem NP-hard many

Table 7. Order of relationship in some problems.

Task r (G2)
Associative retrieval 9.42±0.5

N th-Farthest 83.20±0.2
Copy 79.00±0.3
Sort 79.58±0.1
RAR 83.30±0.2

Convex hull 80.78±0.6
Traveling salesman problem 83.58±0.3

Shortest path 79.81±0.2
Minimum spanning tree 79.57±0.5

Table 8. Mean and std. of numerical rank of the leanred weight
G2 for several tasks. The upper bound for the rank is 96.

for different tasks in Table 8. For each task, we run the
training 5 times and take the mean and std. of r (G2). The
rank is generally higher for tasks that have higher orders
of relationship. That said, the model tends to overuse its
relational capacity. Even for the zero-order Copy task, the
rank for the distillation transformation is still very high.

H. Geometry and graph task description

In this testbed, we use RMSprop optimizer with a learning
rate of 10−4 and a batch size of 128 for all baselines. STM
uses the same setting across tasks nq = 8, d = 96, nr = 96.

6The input is sequence of triplets, which is equivalent to se-
quence of edges. Hence, the complexity is based on the number of
edges in the graph.

The random one-hot features can be extended to binary
features, which is much harder and will be investigated in
our future works.

Convex hull Given a set of N points with 2D coordinates,
the model is trained to output a list of points that forms a
convex hull sorted by coordinates. Training is done with
N ∼ [5, 20]. Testing is done with N = 5 and N = 10
(no prebuilt dataset available for N = 20). The output is a
sequence of 20-dimensional one-hot vectors representing
the features of the solution points in the convex-hull.

Traveling salesman problem Given a set of N points
with 2D coordinates, the model is trained to output a list
of points that forms a closed tour sorted by coordinates.
Training is done with N ∼ [5, 10]. Testing is done with
N = 5 and N = 10. The output is a sequence of 20-
dimensional one-hot vectors representing the features of the
solution points in the optimal tour.

Shortest path The graph is generated according to the fol-
lowing rules: (1) choose the number of nodes N ∼ [5, 20],
(2) after constructing a path that goes through every node
in the graph (to make the graph connected), determine ran-
domly the edge between nodes (number of edges E ∼
[6, 30]), (3) for each edge set the weight w ∼ [1, 10]. We
generate 100,000 and 10,000 graphs for training and testing,
respectively. The representation for an input graph is a se-
quence of triplets followed by 2 feature vectors representing
the source and destination node. The output is a sequence
of 40-dimensional one-hot feature vectors representing the
solution nodes in the shortest path.

Minimum spanning tree We use the same generated in-
put graphs from the Shortest path task. The representation
for an input graph is only a sequence of triplets. The output
is a sequence of 40-dimensional one-hot feature vectors rep-
resenting the features of the nodes in the solution edges of
the minimum spanning tree.

Some generated samples of the four tasks are visualized in



Self-Attentive Associative Memory

Fig. 5. Learning curves are given in Fig. 6.

I. Reinforcement learning task description

We trained Openai Gym’s PongNoFrameskip-v4 using
Asynchronous Advantage Actor-Critic (A3C) with hyper-
parameters: 32 workers, shared Adam optimizer with a
learning rate of 10−4, γ = 0.99. To extract scene features
for LSTM and STM, we use 4 convolutional layers (32
kernels with 5 × 5 kernel sizes and a stride of 1), each of
which is followed by a 2× 2 max-pooling layer, resulting
in 1024-dimensional feature vectors. The LSTM ’s hidden
size is 512. STM uses nq = 8, d = 96, nr = 96.

J. bAbI task description

We use the train/validation/test split introduced in bAbI’s en-
valid-10k v1.2 dataset. To make STM suitable for question
answering task, each story is preprocessed into a sentence-
level sequence, which is fed into our STM as the input
sequence. The question, which is only 1 sentence, is pre-
processed to a query vector. Then, we utilize the Inference
module, which takes the query as input to extract the output
answer from our relational memoryMr. The preprocess-
ing and the Inference module are the same as in Schlag &
Schmidhuber (2018). STM’s hyper-parameters are fixed to
nq = 20, d = 90, nr = 96. We train our model jointly for
20 tasks with a batch size of 128, using Adam optimizer
with a learning rate of 0.006, β1 = 0.9 and β2 = 0.99.
Details of all runs are listed in Table 9.

K. Characteristics of memory-based neural networks

Table 10 compares the characteristics of common neural net-
works with memory. Biological plausibility is determined
based on the design of the model. It is unlikely that human
memory employs RAM-like behaviors as in NTM, DNC,
and RMC. Fixed-size memory is inevitable for online and
life-long learning, which also reflects biological plausibil-
ity. Relational extraction and recurrent dynamics are often
required in powerful models. As shown in the table, our
proposed model exhibits all the nice features that a memory
model should have.



Self-Attentive Associative Memory

Figure 5. Samples of geometry and graph tasks. From top to bottom: Convex hull, TSP, Shortest path and Minimum spanning tree. Blue
denotes the ground-truth solution.

Figure 6. Learning curves on geometry and graph tasks.



Self-Attentive Associative Memory

Task run-1 run-2 run-3 run-4 run-5 run-6 run-7 run-8 run-9 run-10 Mean
1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00 ± 0.00
2 0.1 0.6 0.1 0.1 0.7 0.2 0.2 0.0 0.1 0.0 0.21 ± 0.23
3 3.4 3.2 1.0 1.3 2.4 3.8 3.2 0.5 0.9 1.6 2.13 ± 1.14
4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00 ± 0.00
5 0.6 0.2 0.6 0.6 0.7 0.5 0.9 0.5 0.7 0.4 0.57 ± 0.18
6 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.00 ± 0.00
7 1.0 0.9 0.5 0.6 0.9 1.4 1.0 0.6 0.5 0.7 0.81 ± 0.27
8 0.2 0.1 0.1 0.2 0.0 0.0 0.1 0.2 0.1 0.2 0.12 ± 0.07
9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00 ± 0.00

10 0.0 0.1 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.03 ± 0.06
11 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.01 ± 0.03
12 0.1 0.1 0.1 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.04 ± 0.05
13 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.01 ± 0.03
14 0.1 0.0 0.1 0.0 0.1 0.3 0.0 0.1 0.5 0.4 0.16 ± 0.17
15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00 ± 0.00
16 0.3 0.2 0.2 0.3 0.1 0.3 0.6 0.5 0.3 0.1 0.29 ± 0.15
17 0.6 2.6 0.4 0.4 0.5 2.1 3.5 0.5 0.9 0.3 1.18 ± 1.07
18 1.0 0.3 0.2 0.1 0.4 0.4 0.2 0.0 0.1 0.0 0.27 ± 0.28
19 4.4 0.3 0.8 0.0 8.8 0.4 0.3 0.1 4.7 0.8 2.06 ± 2.79
20 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.00 ± 0.00

Average 0.59 0.43 0.21 0.19 0.73 0.48 0.50 0.15 0.44 0.23 0.39 ± 0.18
Failed task 0 0 0 0 1 0 0 0 0 0 0.10 ± 0.30(>5%)

Table 9. Results from 10 runs of STM on bAbI 10k. Bold denotes best run.

Model Fixed-size Relational Recurrent Biologically
memory extraction dynamics plausible

RNN, LSTM � " � �

NTM, DNC � " � "

RMC � � � "

Transformer " � " "

UT " � � "

Attentional LSTM " � � "

STM � � � �

Table 10. Characteristics of some neural memory models


