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Abstract—Efficient molecular dynamics (MD) simulation is
vital for understanding atomic-scale processes in materials sci-
ence and biophysics. Traditional density functional theory (DFT)
methods are computationally expensive, which limits the feasi-
bility of long-term simulations. We propose a novel approach
that formulates MD simulation as a time-series forecasting
problem, enabling advanced forecasting models to predict atomic
trajectories via displacements rather than absolute positions. We
incorporate a physics-informed loss and inference mechanism
based on DFT-parametrised pair-wise Morse potential functions
that penalize unphysical atomic proximity to enforce physical
plausibility. Our method consistently surpasses standard base-
lines in simulation accuracy across diverse materials. The results
highlight the importance of incorporating physics knowledge
to enhance the reliability and precision of atomic trajectory
forecasting. Remarkably, it enables stable modeling of thousands
of MD steps in minutes, offering a scalable alternative to costly
DFT simulations.

Index Terms—molecular dynamics, time-series forecasting,
physics-informed machine learning

I. INTRODUCTION

Molecular dynamics (MD) simulations are critical for exam-
ining atomic-scale interactions in many scientific fields such as
materials science and drug discovery. Classical MD, based on
numerically integrating Newton’s equations of motion at the
atomic scale, has long been a fundamental tool for probing
molecular behavior [14], [22]. Despite its generality, this
method offers only an approximate description of how atoms
interact with one another. To be stable, it needs very small time
steps, on the order of femtoseconds. This results in high com-
putational costs when simulating longer-timescale phenomena.
On the other hand, ab initio molecular dynamics (AIMD)
methods such as density functional theory (DFT) provide a
more accurate quantum-level description of atomic interactions
but are orders of magnitude more expensive, making them
impractical for large systems or long simulations [10], [13].
Both approaches, therefore, face fundamental limitations in
scalability and efficiency. As a result, the growing demand for
faster and more scalable MD modeling has led to increasing
interest in machine learning (ML)-based alternatives [1], [23].

State-of-the-art ML methods, including generative models
[3], [8], graph neural networks [12], [29], and recurrent
architectures [4], [21], [23], have demonstrated potential in

*Corresponding author: thai.le@deakin.edu.au

deciphering molecular interactions from existing MD trajec-
tory data. Nonetheless, three limitations remain. First, most
current sequential MD models predict exact atomic posi-
tions, which makes it hard for them to work with different
molecule structures and typically leads to unstable long-term
rollouts. This challenge arises from position-based models
relying heavily on the spatial patterns seen during training,
making them particularly sensitive to distribution shifts at test
time. As prediction errors accumulate over successive steps,
these models can quickly diverge from reasonable trajectories.
Second, generative approaches suffer from exposure bias and
dependence on carefully tuned priors [3], [16], which hinder
their robustness and scalability. Third, all existing approaches
lack explicit physical constraints, leading to unrealistic atomic
configurations that fail to align with real-world molecular
behavior. Without these constraints, models may generate
unstable high-energy states, where atoms exhibit unphysical
overlaps or diverge from expected motion patterns.

To overcome these limitations, we propose a physics-
informed time-series forecasting framework, dubbed Phys-
TimeMD, that treats molecular dynamics as a time-series
prediction problem. Moreover, by forecasting atomic displace-
ments instead of coordinate positions, our approach captures
relative motion and encodes local physical dynamics while re-
maining invariant to global spatial shifts. Rather than sampling
atomic trajectories, our approach formulates molecular dy-
namics as a deterministic displacement forecasting task. This
avoids handcrafted prior tuning and complicated sampling pro-
cesses in generative rollouts, leverages local temporal depen-
dencies, and enables the incorporation of physical constraints
later. By reframing the problem in this way, we improve sim-
ulation robustness across temperatures and molecular systems
while benefiting from advances in time-series forecasting [24],
[26], [27], offering a stable and scalable framework for long-
range trajectory prediction. More importantly, we incorporate
explicit physical constraints by integrating knowledge from
the Morse potential [15] into both the training loss and the
inference process. Specifically, the loss function penalizes
atomic pairs that violate realistic bonding distances, while
the inference mechanism adjusts predicted displacements to
discourage unphysical overlaps and excessively high inter-
atomic forces. This dual enforcement of physical plausibility
not only reduces the likelihood of unstable or energetically
unfavorable configurations but also promotes more accurate



and chemically meaningful trajectory generation throughout
extended simulations. By combining state-of-the-art time-
series forecasting with physics-informed regularization, our
method outperforms existing ML approaches that model atom
positions without physical insights, delivering more accurate,
physically consistent, and computationally efficient molecular
dynamics simulations.

In summary, our contributions are three-fold:

e« We formulate MD simulation as a displacement-based
time-series forecasting framework, allowing application
of state-of-the-art time-series models while avoiding the
complexity and instability associated with generative
sampling methods.

o We pioneer incorporating physics-informed constraints by
integrating the Morse potential knowledge into both the
training loss and inference, promoting realistic atomic
interactions.

« We conduct extensive experiments across diverse mate-
rials, showing that our method achieves higher accuracy
and can generate stable molecular trajectories for thou-
sands of steps, significantly outperforming existing ML-
based MD approaches in both precision and efficiency.

II. METHOD

We introduce the PhysTimeMD framework, which predicts
future atomic positions by combining time-series learning
and physics-informed regularization. It processes past atomic
positions into displacement vectors, forecasts future move-
ments with any time-series models, and reconstructs future
positions. A final correction step, based on the Morse potential,
ensures the predicted configurations obey physical interaction
constraints during both training and inference. An overview of
our framework is depicted in Fig. 1

A. Displacement-based Time-series Forecasting Formulation

Let S = {S;}1_, denote a molecular trajectory, where each
state S; consists of N atoms with atomic positions r; =
{ri};L, in three-dimensional space, i.e, r; = {P{;, P, P},}.
The goal of forecasting is to predict future states Sy 41, ..., St
given historical observations Si, ..., S;. In practice, to enable
efficient training, fixed-size input and output windows are
typically used. A generic forecaster fy models the conditional
distribution of future states given past observations:

Sivrerr = fo(Si—m), (1)

where H is the historical window size, L is the forecasting
horizon, and fp is a parameterized function that captures
temporal patterns within the data. However, we argue that
predicting absolute atomic positions is not robust due to the
sensitivity to global transformations and the accumulation
of errors over time. Instead of directly predicting absolute
positions r;11, we model atomic displacements A; as:
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This displacement-based formulation improves generalization
by ensuring predictions remain invariant to global coordinate
transformations and enhances stability by reducing the accu-
mulation of positional errors.

To construct the training dataset, we process molecular
trajectory data as follows. Given 7' molecular configurations
{S¢}1_,, we extract both absolute positions and displacements.
Each sample consists of the atomic coordinates r; at time
step t and the corresponding displacements A;. The dataset is
structured as a time series with features at step ¢ as:

X = [I‘ta At—l]
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where P and A denote position and displacement components,
respectively. At t = 1, we set Ay = 0. The target becomes:
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which fully determines .S; since the original states can be re-
constructed from the predicted displacements and the original
position {P7y, Py, P71}

We translate the forecasting problem (Eq. 1) into predict-
ing the displacement target series Ay, 1 given the input
X .. Specifically, we train a model fy to learn the mapping:

Avivr1= fo(Xe_m.t) (5)

By learning displacement dynamics, the model captures lo-
cal interactions while remaining invariant to rigid-body trans-
formations. The predicted states St+1:t+ 1 can be reconstructed
from the predicted displacements and the initial positions:

N
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During inference, we adopt an autoregressive strategy over
fixed forecasting windows of length L. Specifically, at each
autoregression step, the model takes as input the recent
window of atomic positions and displacements, predicts the
displacements for the next interval, and reconstructs future
atomic coordinates via Eq. 6. These predicted positions,
combined with their corresponding displacements, are used
as features for the next prediction window. This iterative
procedure enables long-range trajectory rollout to arbitrary
trajectory lengths. By forecasting displacements segment by
segment rather than sampling full trajectories in one pass, our
approach avoids compounding generation noise and retains
the flexibility to incorporate physical constraints or corrections
between steps.

B. Physics-Informed Training (PIT)

Morse Potential To ensure physically consistent predic-
tions, we introduce a physics-informed regularization term
derived from the Morse potential, which models interatomic
interactions as:

E(d) = D, (1 - e*a<d*de))2 + b, (7)
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Fig. 1. Overview of the PhysTimeMD framework. The framework takes as input a sequence of atomic positions over the past H timesteps and converts them
into relative displacements for each atom (e.g., A; ; and Aj ;1 represent the movement vectors of atoms 4 and j between consecutive steps). Then, it uses
a time-series forecaster to predict L-step future displacements. These predictions are then integrated to reconstruct future atomic positions (see Sec. II-A). A
physics-informed mechanism, guided by the Morse potential based on the distance between 2 atoms (e.g, d*7), refines the predicted configurations through a
physics-based loss during training (see Sec. II-B) and a physics-based correction during inference (see Sec. II-C), ensuring adherence to physical constraints.

where d is the interatomic distance, D, is the bond dissociation
energy, d. is the equilibrium bond length, a controls the
steepness of the potential, and b is a constant energy offset.
We fit these parameters (d, D., d., a, and b) against DFT-
computed energies for a number of atom-atom pairs. Specif-
ically, we compute these DFT energies for each atom-atom
pair by performing electronic structure optimization using
VASP 5.4.4 [9]. The calculations use the generalized gradient
approximation (GGA) of Perdew, Burke, and Ernzerhof (PBE)
[18]. We apply an energy cutoff for the set of plane wave
basis sets of 520 eV, and the energy tolerance is 10~6 eV. For
each atom-atom pair, we perform the DFT optimization at 20
separation distances, and then fit Eq. 7 against the energies
obtained at these separation distances.

Physics-Informed Loss Function For a given molecular
system at step ¢, the model predicts atomic displacements A,
which are used to update the atomic coordinates:

iy =TI + At. (8)
M

We then sample M pairs of atoms {(im,jm)}n—q and
compute their pairwise distances using the predicted positions:
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To encourage physically plausible predictions at step t, we
define a physics-informed loss based on the Morse potential:

1 o
'Cphys = M Z E(dtzllldm)’ (10)
(Zm,Jm )EM’
where
M’ = { (ims jm) € {(ims ) bmimr | E(d5337") > 750}
(11)

Here, E(d) is the Morse potential energy calculated using
Eq. 7 and 7,27, is a predefined energy threshold for a pair of
atoms (4, 7). The core idea is to selectively apply the physics
constraint only to atomic pairs whose predicted interactions
violate physical plausibility, as determined by the energy
threshold. We compute 7,7 from the training dataset. For each

atomic pair (7, j), we iterate over all time steps in the training
trajectories and compute the Morse potential energy E(d,’)
at each step. The threshold 7,1 is then set as the maximum
energy observed for that pair across the entire training set:
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Optimization and Training Details The training objective
consists of a weighted sum of the mean squared error (MSE)
between predicted and ground-truth displacements, along with
a physics-informed regularization term:

L= EMSE + )\EphySa (13)

where A is the physics-informed hyperparameter controlling
the trade-off between predictive accuracy and physical consis-
tency. We optimize this objective using the Adam optimizer
with a learning rate 1 and a mini-batch size of B. The training
process updates the model parameters 6 via gradient descent:

oL
0—0—n 20 (14)
To ensure stability during training, we apply gradient clipping
and use an adaptive learning rate schedule. The model is
trained with early stopping based on validation loss. This loss-
based approach encourages the model to learn to predict stable
molecular trajectories.

C. Physics-Informed Inference (PII)

Although the model is trained with a physics-informed loss
that penalizes high-energy atomic states, this alone does not
guarantee physically plausible predictions at inference time.
The learned model may still occasionally generate displace-
ments that result in unphysical atom-atom interactions, such
as atoms collapsing too closely, especially when extrapolating
to long trajectories or out-of-distribution inputs.

To address this, we introduce a physics-informed inference
correction step as a safeguard during trajectory rollout. Specif-
ically, after predicting the atomic displacements and updating
positions, we check whether any interatomic distances violate



physical constraints by computing their Morse potential en-
ergy. If the predicted configuration results in excessive poten-
tial energy for any sampled pair, we discard the displacement
and freeze the atoms’ positions at the current step.

In particular, at each autoregressive step, similar to con-
structing the physics-informed loss, we sample a set of atomic
pairs (i,7) and compute the corresponding interatomic dis-
tances d;} using the updated coordinates:

diﬁl = ||ri+1 - r{+1||2. (15)
The Morse potential energy for each pair is evaluated as
o y 2
B(df)) = D. (1= e ®@h=0) 4 (16)

To avoid the generation of unphysical configurations, we
again apply the energy threshold 7,7, in Eq. 12. If the
computed energy E(d;jl) for any sampled pair exceeds its
corresponding threshold Tf;iin, the predicted displacement

Ay is rejected and replaced with a zero vector:

At+ 15
0, otherwise

Ay = if B(dy!,) <77, for all sampled pairs
a7)
This correction serves as a real-time filter that enforces
conservative updates, effectively preventing the propagation
of physically invalid configurations. This is particularly impor-
tant during autoregressive inference at test time, where error
accumulation can lead to out-of-distribution inputs, making
the training-time loss in Eq. 10 insufficient to guarantee
constraint satisfaction. Inference pseudocode is provided in
Algo. II-C, with a runtime complexity that scales linearly
with the prediction length 7.

III. EXPERIMENTAL RESULTS
A. Generation of AIMD Atomic Data

To create training and testing data for machine learning
models, we carried out AIMD simulations using the Vienna
Ab initio Simulation Package (VASP) [9]. We simulated a
diverse set of materials containing different atomic species,
with system sizes up to 300 atoms. These simulations were
run at temperatures ranging from 600K to 1200 K. At these
temperatures, atomic vibrations become significant, making it
possible to probe various thermodynamic behaviors. However,
the resulting complex and noisy trajectories present a major
challenge for learning-based models aiming to accurately
predict molecular dynamics over time.

Each simulation used a time step of 1 fs, updating atomic
positions and velocities via the Verlet integration scheme [6].
All simulations were performed in the NVT ensemble us-
ing the Nosé thermostat to maintain constant temperature.
The atomic interactions were modeled using a projector-
augmented wave (PAW) pseudopotential, along with the
Perdew—Burke-Ernzerhof (PBE) exchange-correlation func-
tional under the generalized gradient approximation (GGA).

Algorithm 1 Physics-Informed Inference

Require: Initial atomic positions ry, Ay = 0, forecasting
model fy, energy threshold 7,77 . . total steps T, forecast-
ing window size L
Ensure: Forecasted trajectory {r;}7_;
1: fort =1to T do

2: Construct input X; = [ry, Ap_q]

rain’

3: Predict future displacements: Ay.pyr—1 = fo(X4)
4: for /{=0to L —1do
5: Compute riip11 = Tipp + Apyy
6: Sample atomic pairs P = {(4, )} from [1, N]
7: violation < False
8: for each (i,j) € P do
. 0,0 (| J
9: Compute dyf, = |Iry,, — 1yl
10: Compute E(d;7,) using Morse potential
. . i,J 1,5
11: if E(d;),) > 774, then
12: violation ¢ True
13: break
14: end if
15: end for
16: if violation then
17: At+[ +~—0
18: Tiyot1 = Tiqo + Dyt
19: end if
20: end for
21: end for
TABLE 1
DATASET STATISTICS ACROSS DIFFERENT TEMPERATURES AND
MATERIALS.
Dataset Material Temperature (K) | Train/Valid/Test Size
A Li;0GeP2S1o 600 28,000 / 4,000 / 1,000
B Li;0GeP2S1o 800 28,000 / 4,000 / 1,000
C Li;0GeP2S1o 1,000 28,000 / 4,000 / 1,000
D Li;0GeP2S1o 1,200 28,000 / 4,000 / 1,000
E Li7Ta; Og 800 28,000 / 4,000 / 1,000
F Li7Ta; O¢ 1,000 19,144 / 2,735 / 1,000
G LiGaBr; 1,000 5,967 / 852/ 1,000

A plane-wave energy cutoff of 500 eV and single I'-point
sampling was used.

The simulation produces six datasets, each corresponding
to a distinct combination of temperature and sequence length.
For each dataset, we apply a train/validation/test split and
summarize the resulting dataset statistics in Table I.

B. Training and Evaluation Setup

All models were trained using a single NVIDIA A100 GPU,
with training times ranging from 1 to 1.6 hours depending
on the dataset size. To assess result variability, we initially
conducted multiple training runs and measured the mean and
standard deviation of the final performance metrics. However,
we observed that the variations were negligible. Therefore,
in line with common practice in time-series forecasting, we
report results from a single representative training run.



To evaluate each model, we begin with an initial window of
atomic positions of length H. Using this as input, the model
autoregressively predicts the future atomic trajectory over a
specified forecast horizon (1000 testing steps). Importantly,
during this prediction phase, the model does not receive
ground-truth positions at each step. Instead, it feeds its own
previously predicted positions back as input for subsequent
predictions. This setup reflects a more realistic and challenging
scenario, as it simulates deployment conditions where ground-
truth data is unavailable beyond the observed history.

Forecasting metrics To assess how close the predicted
atomic trajectories are to the ground-truth data, we adopt
standard metrics from the time-series forecasting literature,
namely the Mean Squared Error (MSE) and Mean Absolute
Error (MAE). These metrics can be computed between the
predicted and ground-truth values, which can refer to either
atomic displacements Al € R? or positions r; € R3. For a
forecast horizon of length L over N atoms, the metrics are:

a) Displacement:

1 L N 2
MSEA—LN;;HA;—A; N (18)
1 L N )
MAEA:ﬁ;; Al — Al , (19)
b) Position:
1 L X . 2
MSE, = ﬁ;; |t — i, (20)
1 L N _ _
MAE, L—N;; i —ri], - Q21

These metrics quantify the average squared and absolute de-
viations, serving as reliable indicators of forecasting accuracy
for both displacement and position predictions.

Physical metrics To evaluate the physical plausibility of
predicted trajectories, we introduce physical metrics that quan-
tify how often the model produces energetically infeasible
atomic configurations. Specifically, for each forecasted step
t, we sample a subset of atomic pairs (7,7) and compute their
pairwise distances d;’ = ||r} — r]||2, which are then used to
calculate the corresponding Morse potential energies F(d;’).

A violation is recorded if the energy between any sampled
pair exceeds a threshold 7; ;. We define a binary indicator:

1, if E(dY) > 7,

Hij _
t .
0, otherwise

(22)
Here, 7; ; can be estimated using the test dataset as follows:
for each atomic pair (7, j), we iterate over all time steps in the
test trajectories and record the Morse potential energy F(d;’)
at each step. The threshold 7; ; is then set to the maximum
energy observed for that pair across the entire test set:

7i; = max E(d). (23)

teTest

TABLE II
PERFORMANCE COMPARISON BETWEEN OUR METHOD PhyTimeMD AND
CONVENTIONAL MD BASELINES. LOWER VALUES OF MSE,, MAE,, AND
Vi INDICATE BETTER PERFORMANCE. BEST RESULTS ARE BOLDED.

Dataset | Model MSE, | MAE;, Vi %
LSTM 30.57 4.65 33.833
A TimeMixer 10.08 2.05 3.384
PhysTimeMD (Ours) 6.20 0.98 0.028
LSTM 27.14 4.36 31.074
B TimeMixer 13.67 2.66 2.677
PhysTimeMD (Ours) 6.78 1.13 0.034
LSTM 31.65 4.71 33.754
C TimeMixer 12.52 2.53 5.410
PhysTimeMD (Ours) 5.92 1.11 0.000
LSTM 31.17 4.64 27.797
D TimeMixer 17.78 3.89 4.110
PhysTimeMD (Ours) 6.08 1.13 0.026
LSTM 32.35 4.40 44.090
E TimeMixer 10.35 1.78 9.984
PhysTimeMD (Ours) 4.49 0.82 6.760
LSTM 33.39 4.48 42.164
F TimeMixer 7.63 1.25 6.725
PhysTimeMD (Ours) 3.76 0.77 2.310
LSTM 52.92 6.09 31.237
G TimeMixer 31.38 4.51 7.578
PhysTimeMD (Ours) 9.54 1.18 1.140

This data-driven approach ensures that the violation crite-
rion reflects the highest physically valid interaction energy
encountered under ground-truth dynamics. By using pair-
specific thresholds instead of a global constant, we accommo-
date natural variations in interaction strength and equilibrium
distances across different atom types or bonded states.

Let P; denote the set of sampled atomic pairs at time ¢ with
|P:| = M, the total number of violations V,, over a forecast
horizon of length L is computed as:

L

VoL, M) =) > T

t=1 (i,j)€P:

(24)

To allow for a fair comparison across different systems and
trajectories, we also report the normalized violation rate V.,
which captures the average proportion of violating pairs per
time step:

V, = V. (25)

LM

These violation-based metrics are orthogonal to traditional
error metrics and serve as a proxy for the degree of physical
constraint adherence in the predicted dynamics.

C. Comparison with Conventional MD models

To evaluate the effectiveness of our approach, we compare
it against conventional MD models that typically predict future
atomic positions directly from past positions without any
physics constraint. Specifically, we follow prior work on mod-
eling MD trajectories [4], [21], [23] and implement an LSTM
network for position prediction. We also include an additional
baseline based on TimeMixer [24], a strong deep-learning
model for time-series forecasting. This baseline represents a
straightforward approach that directly applies a time-series
model to predict atomic positions. For a fair comparison,



our PhysTimeMD framework also adopts TimeMixer as the
forecast backbone. We evaluate the models using MSE, and
MAE,. It is worth noting that generative and graph methods
[3], [16], [20] cannot apply to our datasets, as they rely on
prior structural information that is unavailable in our setting.

The results in Table II show that our PhysTimeMD frame-
work consistently outperforms both LSTM and TimeMixer
across all datasets. For example, in dataset C, PhysTimeMD
achieves an MSE; of 5.92 and an MAE; of 1.11, compared
to 12.52 and 2.53 for TimeMixer, and 31.65 and 4.71 for
LSTM, respectively. The violation rate V;. is reduced to 0.0%,
in stark contrast to 5.4% for TimeMixer and 33.7% for LSTM.
Similar improvements are observed across the other datasets.
In dataset E, PhysTimeMD achieves an MSE; of 4.49 and
MAE; of 0.82, improving upon TimeMixer (MSE,: 10.35,
MAE;: 1.78) and LSTM (MSE;: 32.35, MAE,: 4.40). In
dataset G, where the baseline errors are particularly high,
PhysTimeMD reduces the MSE, from 52.92 (LSTM) and
31.38 (TimeMixer) to just 9.54, and MAE; from 6.09 and
4.51 down to 1.18.

Moreover, our violation rate V. is consistently reduced by
at least an order of magnitude. LSTM models yield V, values
between 27.8% and 44.1%, while TimeMixer achieves 2.7% to
9.9%. In contrast, PhysTimeMD keeps V,. below 1.2% across
all datasets. For example, V,. drops to 0.028% in dataset A,
0.034% in B, and 0.026% in D. These results confirm the
effectiveness of our approach, which combines displacement
modeling with physics-informed components.

D. Benchmarking with Time-Series Baselines

In this section, we examine our PhysTimeMD as a general
framework that can be applied to any modern time-series
model to equip them with physics-informed components. To
create an equal impact of displacement modeling, we apply
the Displacement-based Time-Series Forecasting Formulation
(Sec. II-A) uniformly across all forecasting models. Under this
setup, we evaluate several state-of-the-art time-series architec-
tures both with and without the integration of PhysTimeMD.
These include TimeMixer [24], ITransformer [11], Mamba [7],
and TSMixer [2]. We implement these baselines using a public
code repository introduced in [25].

For illustrative purposes, Fig. 2 reports MAEA and nor-
malized physical violation rate V,. (in %) for datasets G
and F, while the comprehensive results are provided in Ap-
pendix Tab. IV with all datasets and metrics. In dataset F,
all architectures benefit from PhysTimeMD: the MAEA of
TSMixer decreases from 1.32 x 1072 to 6.88 x 1073 with
V., halved (from 6.5% to 2.6%), and ITransformer, despite
only a modest improvement in MAEA (from 7.53 x 1073
to 6.97 x 1072), exhibits a substantial decrease in violation
rate (from 6.3% to 2.7%). In dataset G, PhysTimeMD
yields remarkable improvements: the MAEA of TimeMixer
decreases from 5.87 x 1073 to 3.79 x 10~2 with V. reduced
from 15.4% to 11.4%; TSMixer’s MAE, is reduced fivefold
(from 2.48 x 1072 to 3.79 x 10~3) while V. declines nearly
fourfold (from 45.8% to 11.8%). Two notable cases further

TABLE III
ABLATION STUDY OF PHYSTIMEMD
COMPONENTS—PHYSICS-INFORMED TRAINING (PIT) AND
PHYSICS-INFORMED INFERENCE (PIF)—USING THE TIMEMIXER
BACKBONE ON DATASET A. REPORTED METRICS INCLUDE MAEA,
MSEA, AND THE PHYSICAL VIOLATION RATE V;. (%).

PIT PIF MAEA MSEA Vi %
X X 6.05 x 103 6.47 x 10~° 4.36
v X 5.73 x 103 5.89 x 1075 2.83
X v 4.77 x 103 4.10 x 10~3 0.045
v /  4.60x10°3 3.82x1075% 0.028

highlight the benefits of PhysTimeMD. In dataset B, although
TimeMixer without PhysTimeMD slightly outperforms the
version with PhysTimeMD in terms of MAEA and MSE,, its
violation rate is 6.1% compared to 0.034% of PhysTimeMD,
rendering it impractical to be used in reality. This underscores
the capability of PhysTimeMD to enforce physical consistency
independently of the forecast error. In dataset E, the back-
bone TSMixer without PhysTimeMD diverges, producing un-
bounded position predictions that preclude reliable MAE/MSE
computation, whereas with PhysTimeMD it remains stable
(see Appendix VII-A for an analysis of this). Across all
remaining datasets, PhysTimeMD consistently enhances both
forecasting accuracy and adherence to physical constraints,
demonstrating that integrating physics-informed methodolo-
gies into contemporary time series models yields predictions
that are both more precise and inherently physically plausible.

E. Ablation Study and Hyperparameter Analysis

Effectiveness of Physics-Informed Training and Infer-
ence. In this experiment, we investigate the contributions
of the individual components of PhysTimeMD, specifically
Physics-Informed Training (PIT) and Physics-Informed Infer-
ence (PIF). The evaluation is conducted using the TimeMixer
backbone on Dataset A. The hyperparameter A is fixed at
0.0001, as this value yields the best performance (refer to
Tab. 1V). The ablation results in Tab. III demonstrate that
both PIT and PIF significantly enhance the TimeMixer back-
bone’s performance. Enabling PIT alone reduces MAE from
6.05 x 1073 to 5.73 x 1073 (a 5.3% improvement), MSE (a
9.0% improvement), and V. (a 35.1% reduction). Enabling PIF
alone yields larger gains: MAE decreases with an improvement
of 21.2%, MSE (36.6% improvement), and V, (a 99.0%
reduction). Combining both PIT and PIF (full PhysTimeMD)
achieves the best overall results, with MAE 4.60 x 1072 (a
24.0% improvement), MSE 3.82 x 105 (a 40.9% improve-
ment), and V, 0.028% (a 99.4% reduction). These findings
confirm that each component contributes uniquely to accuracy
and physical consistency, and their joint application delivers
the best results.

Sensitivity to the Hyperparameter A\ We perform an abla-
tion study to examine the effect of the physics-based hyperpa-
rameter A on model accuracy, as shown in Fig. 3. We explore
three tuned values—0.0001, 0.0005, and 0.001—alongside a
value of A = 0, which corresponds to removing the physics-
informed training component. Both models show improved



—— With PhysTimeMD

ITransformer ITransformer

64

—— Without PhysTimeMD
ITransformer

ITransformer

264 532

IOXTJA[OUIL],
Mamba
IoXTNPUWLT,

TSMixer
Dataset F: V,%

TSMixer
Dataset F: MAE, (x107%)

Mamba

JOXTIAOWILT,
Mamba
IoXTNPUWLT,

TSMixer
Dataset G: V,%

TSMixer
Dataset G: MAE, (x107%)

Fig. 2. Radar plot comparing forecasting error (MAEA ) and normalized physical violation rate V- (%) across datasets G (left) and F (right). The lower the
metrics the better the results. Each axis represents one of the four baseline architectures—TimeMixer, ITransformer, Mamba, and TSMixer—with and without
the PhysTimeMD framework, highlighting improvements in both accuracy and physical consistency.

x1073
4.80
—— TimeMixer
4.75 Mamba
4.70
=
= 4.65
~ 4.60
4.55
4.50
00.0001 0.0005 0.001
A

Fig. 3. Effect of A on MAEA performance for TimeMixer and Mamba on
Dataset A. Each curve illustrates how careful tuning of this hyperparameter
can positively influence prediction accuracy.

performance within the tuned range. Specifically, Mamba
achieves its lowest MAE of 4.51 x 1073 at A = 0.0005,
while TimeMixer performs best at A = 0.0001 with a MAE of
4.60 x 1073, These findings indicate that the hyperparameter
A plays a critical role in model accuracy; however, excessively
large values may degrade performance.

F. Evaluation of Material Properties

To assess the physical consistency of the predicted atomic
trajectories, we compute the diffusion coefficient D, which
captures how atoms diffuse over time. Diffusivity is a key
material property related to ionic transport, defect motion, and
phase behavior in solids and fluids. We estimate D using the
Einstein relation:

<|r(t) - r(0)|2> — 2nDt, (26)

where r(t) is the position of an atom at time ¢, n is the
number of spatial dimensions, and (-) denotes an average over
atoms and simulation time. While it is important for a model
to accurately predict the positions of atoms in a dynamics
simulation, it is more important for the model to satisfy key
quantitative and qualitative features, such as the diffusivity of
ions in the material.

In Fig. 4, we report the diffusivity estimated from our
model’s generated trajectories and compare it against that from
a strong time-series forecaster (TimeMixer) and ground-truth
data of dataset A. Closer agreement with the ground-truth
indicates stronger physical fidelity in the long-term behavior of
the predictions. PhysTimeMD achieves a diffusivity magnitude
around 10717, closely matching the ground-truth range, while
the baseline model TimeMixer significantly overestimates dif-
fusivity at approximately 10~1°. More importantly, all the
baseline curves exhibit a consistent upward drift over time,
reflecting crystal melting. In contrast, PhysTimeMD maintains
stable diffusion trends, with only two cases showing minor
deviation (Ge and S), compared to just one in the ground
truth (Ge). This demonstrates that PhysTimeMD not only
captures accurate and stable long-term atomic dynamics but
also generates trajectories with realistic diffusivity values,
making them a viable replacement for ground-truth data in
downstream material simulations.

Regarding running time, our method can generate 1,000
simulation steps in approximately 6 minutes on a single
NVIDIA A100 GPU. In contrast, DFT-based molecular dy-
namics simulations are significantly more computationally
intensive, requiring approximately 24 hours on a 96-CPU core
computational node. This highlights the substantial efficiency
advantage of our approach over traditional DFT simulations.
To reproduce the results, we will release the source code and
data upon publication.

IV. RELATED WORKS

Machine learning has emerged as a powerful paradigm
for enhancing MD simulations, addressing the long-standing
trade-off between simulation accuracy and computational cost.
Early machine learning approaches, such as support vector
machines and autoencoders, were primarily used to extract
thermodynamic properties like free energy from MD trajec-
tories and to approximate full Boltzmann distributions for
small biomolecules [17]. However, these methods fall short
of capturing high-resolution femtosecond (fs) dynamics—one
of the central goals of MD simulations.
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Fig. 4. Diffusivity computed from ground-truth trajectories (left), PhysTimeMD-generated trajectories (middle), and TimeMixer-generated trajectories (right).

Recent advances in machine learning have significantly
enhanced the modeling and acceleration of MD simulations.
Broadly, three classes of deep learning approaches have
emerged as particularly influential: recurrent neural networks,
generative models, and graph neural networks.

Recurrent neural networks (RNNs), including LSTMs, have
been applied to model MD trajectories as high-frequency,
high-dimensional time series data [4], [21], [23]. These models
can capture short-term dynamics but often struggle with long-
range dependencies and scalability, especially when model-
ing complex biomolecular systems with more than a few
dozen particles. This limitation stems from their reliance
on predicting atomic coordinates directly, without integrating
physical principles, which leads to error accumulation and
poor generalization.

Generative models—such as GANSs, diffusion, and flow-
based approaches—have been explored to produce long MD
trajectories by stitching together short segments [3], [5], [8],
[16], [19], [28]. While these methods show promise, they often
suffer from exposure bias, where small errors compound over
iterations, leading to unrealistic long-term dynamics. Training
generative models is often unstable and data-hungry, requiring
careful balancing of adversarial losses or diffusion schedules,
and they lack built-in physical constraints, making it difficult
to ensure energy conservation or adherence to molecular
symmetries. This limits their reliability for simulating fine-
grained, high-resolution trajectories over extended timescales.

Graph neural networks (GNNs) offer a compelling alterna-
tive by modeling molecular systems as graphs, with atoms
as nodes and interactions as edges [12], [20], [29]. GNNs
excel at capturing both local atomic environments and global
physical effects and eliminate the need for handcrafted features
through automatic representation learning. However, GNNs
also present challenges: they require careful graph construction
based on spatial proximity, which may be unstable at high
temperatures or during rapid conformational changes, and their
complex architectures demand extensive tuning and computa-
tional resources. Given these limitations, modeling MD as a
standard time-series forecasting provides a more tractable and
scalable framework.

V. DISCUSSION

In this paper, we introduce a displacement-based, physics-
informed forecasting framework for molecular dynamics. By
predicting atomic displacements and incorporating the Morse
potential into both training and inference, our method achieves
stable and physically plausible simulations over long horizons
while remaining computationally efficient. Experimental re-
sults on various materials at different temperatures show that
our approach not only improves the accuracy of state-of-the-art
time-series forecasting models for molecular dynamics but also
outperforms conventional MD methods in both precision and
efficiency, producing stable trajectories for up to 1,000 simu-
lation steps. Although this marks a significant improvement,
small prediction errors still accumulate over time, gradually
degrading physical fidelity. Future work will aim to address
this by extending the stability and accuracy of the framework
to enable robust long-range simulations over 10,000 steps.
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VII. APPENDIX
A. Analyzing Divergence in Autoregressive Forecasts

We observe a divergence (See Fig. 5) where predicted
values grow unbounded in the predictions on Dataset E. The
comparison involves the TSMixer baseline and our proposed
PhysTimeMD variant. The divergence starts to happen around
250 timesteps across all three dimensions of the visualized
atom. We hypothesize that the divergence stems from a
mismatch between training and inference. During training,
ground-truth inputs are used, while inference depends on the
model’s own predictions, causing errors to accumulate over
time. This distribution shift leads to unstable rollouts. Phys-
TimeMD reduces such instability through physics-informed
constraints, resulting in more stable and physically plausible
long-term predictions.

B. Hyperparameters Setup

The physics loss coefficient A is selected from
{0.001,0.0005,0.0001} through tuning, with the best-
performing value reported. At each training step, M = 500
atom pairs are sampled to compute the energy-based physics
loss, which enforces physically plausible interactions. All
backbone models are trained using a batch size B = 16, an
adaptive learning rate n = 0.01, gradient clipping, and an
early stopping strategy with a patience of 3 epochs, applied



TABLE IV
COMPARISON OF MODEL PERFORMANCE WITH AND WITHOUT PHYSTIMEMD ON MULTIPLE DATASETS. FOR EACH MODEL, WE SELECT THE A VALUE
THAT YIELDS THE LOWEST MAEA AND THEN REPORT THAT MAE ALONGSIDE CORRESPONDING, MAE;, MSEA, MSE; AND ITS CORRESPONDING
Vi %. IN THIS EXPERIMENT, WE CALCULATE THE DISPLACEMENTS AND CONVERT IT BACK INTO THE RAW POSITIONS TO CALCULATE MAE, AND
MSE,. AN ASTERISK (*) DENOTES CASES WHERE THE MODEL DIVERGED, MAKING MAE, MSE, AND V;-% UNRELIABLE. BOLD VALUES INDICATE
IMPROVEMENTS ACHIEVED BY INCORPORATING PHYSTIMEMD.

Dataset | Model PhysTimeMD A MAEA MAE; MSEAa MSE; Vi %
TimeMixer X — 6.05 x 10~3 1.81 6.47 x 10~° 9.62 4.36

v 0.0001 | 4.60 x 10—3 | 098 | 3.82 x 10—° 6.20 | 0.028

ITransformer X — 5.94 x 1073 2.50 6.07 x 10~° 13.23 6.08

A v 0.0005 | 4.76 X 10~3 | 1.01 | 4.00 X 10~5 | 6.17 | 0.005
Mamba X — 5.37 x 1073 2.04 5.25 x 10~° 11.55 3.59

v 0.0005 | 4.51 x 10—3 0.96 | 3.64 x 105 6.11 0.128

TSMixer X — 6.91 x 103 2.32 8.41 x 10~° 13.78 8.62

v 0.001 | 4.51 x10~3 | 110 | 3.68 x 10~3 6.21 0.002

TimeMixer X — 1.48 x 103 0.89 6.76 x 10~ 6 437 6.06

v 0.0005 | 5.24 x 103 1.13 5.00 x 10~° 6.78 0.034

ITransformer X — 7.72 x 1073 2.55 1.05 x 103 13.65 | 10.50

B v 0.001 | 5.53 x 103 | 113 | 5.45 x 10~5 6.73 | 0.090
Mamba X — 7.82 x 1073 2.58 1.09 x 10~ 14.85 5.92
v 0.0005 | 6.47 x 10~3 | 134 | 7.54 x 10~° 6.61 0.117

TSMixer X — 7.75 x 1073 2.33 1.32 x 1074 1520 | 11.20

v 0.001 | 4.61 x 10—3 1.12 | 3.87 x 10~5 6.39 0.058

TimeMixer X — 7.52 x 10~3 1.89 9.63 x 10~° 9.12 1.95

v 0.0001 | 5.98 x 103 1.11 6.55 x 10—5 5.92 0.000

ITransformer X — 9.66 x 103 3.34 1.50 x 10~4 2448 | 24.60

Ie v 0.0005 | 6.06 x 10=3 | 1.06 | 6.69 x 10~5 | 594 | 0.004
Mamba X — 6.92 x 103 2.14 8.44 x 10~° 10.42 2.64

v 0.0001 | 5.89 x 10~3 | 1.12 | 6.36 x 10~ 5 569 | 0.196

TSMixer X — 1.33 x 102 3.87 3.74 x 10~4 4046 | 17.70

v 0.0005 | 5.84 x 103 1.19 | 6.31 x 10— 6.11 0.073

TimeMixer X — 7.47 x 1073 2.57 9.72 x 10~° 14.69 8.08

v/ 0.001 | 5.94 x 10—3 1.13 | 6.51 x 10— 6.08 0.026

ITransformer X — 7.87 x 1073 2.43 1.06 x 10~ 12.49 6.08

D v 0.0001 | 6.60 x 10~3 | 141 | 7.88x 1075 | 699 | 0.026
Mamba X — 7.58 x 1073 2.54 9.99 x 10~5 13.73 5.12

v 0.0005 | 6.48 x 10~3 | 136 | 7.54 x 10~° 6.73 | 0.018

TSMixer X — 8.66 x 103 2.50 2.34 x 10~4 15.88 6.06

v 0.0005 | 5.86 x 10—3 1.15 | 6.35 x 10— 5 6.06 0.092

TimeMixer X — 6.63 x 103 1.74 7.29 x 1077 7.95 9.85

v 0.0001 | 6.17 x 10—3 0.82 | 6.50 x 10—5 4.49 6.76

ITransformer X — 7.15 x 1073 1.31 8.57 x 1075 5.40 17.00

E v 0.001 | 6.38x1073 | 131 | 6.89 X 10—% | 540 7.69
Mamba X — 6.74 x 10~3 1.71 7.74 x 1073 8.29 20.40

v 0.0001 | 6.19 x 10~3 | 091 | 6.54 x 10~° 4.56 8.52

TSMixer X — * % % * .

v 0.001 | 6.20 x 10~3 | 0.89 | 6.55x 105 | 459 | 7.85

TimeMixer X — 7.32 x 1073 1.06 8.94 x 10~° 4.59 2.62

v 0.001 | 6.88x 103 | 0.73 | 8.08 x 10—5 3.78 2.31

ITransformer X — 7.53 x 1073 1.47 8.57 x 10~° 6.80 6.33

E v 0.0001 | 6.97 x 10—3 | 078 | 8.29 x 105 | 3.78 | 2.71
Mamba X — 7.51 x 1073 1.64 9.62 x 10~° 7.26 13.70

v 0.0005 | 6.95 x 103 0.78 | 8.23 x 105 3.78 2.93

TSMixer X — 1.06 x 10—2 1.06 4.59 x 104 4.59 6.52

v 0.0001 | 6.88 x 10—23 | 0.77 | 8.06 x 103 3.76 2.60

TimeMixer X — 5.87 x 10~3 2.16 6.60 x 10~° 14.54 15.40

v 0.001 | 3.79 x 103 | 118 | 3.23 x 105 9.54 11.40

ITransformer X — 8.21 x 10~3 1.94 1.11 x 104 9.04 11.50

G v 0.0005 | 7.14 x 10—3 | 074 | 8.68x 105 | 378 | 2.81
Mamba X — 1.13 x 102 3.86 2.55 x 10~3 72.10 | 32.60

4 0.0005 | 3.86 x 103 122 | 3.30 x 10—5 9.81 12.10

TSMixer X — 2.48 x 10~2 7.17 1.20 x 102 | 423.99 | 45.80

v 0.001 | 3.79x 103 | 121 | 3.21 x 105 9.65 11.80

over a maximum of 10 epochs. This training setup ensures C. Benchmarking with Time-Series Baselines

stable and efficient convergence while maintaining physical See Tab. IV for detailed results of PhysTimeMD.
consistency in predictions.
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